

August 15, 2011

Mr. Roy Crossland START Project Officer U.S. Environmental Protection Agency, Region 7 901 North 5th Street Kansas City, Kansas 66101

Subject:

Removal Site Evaluation and Preliminary Assessment Rotary Drilling Supply Site, Inc., Crystal City, Missouri

CERCLIS ID No: MON000706201

U.S. EPA Region 7 START, Contract No. EP-S7-06-01, Task Order No. 0214 Task Monitors: Jamie Bernard-Drakey, EPA Site Assessment Manager

Jim Silver, On-Scene Coordinator

Dear Mr. Crossland:

Tetra Tech EM Inc. is submitting the enclosed Removal Site Evaluation/Preliminary Assessment Report for the above-referenced facility, incorporating comments from the EPA Task Monitors. If you have any questions or comments regarding this submittal, please contact the project manager at (636) 387-2174.

Sincerely,

Ann Marie Pohlman

START Project Manager

Ted Faile, PG, CHMM

START Program Manager

Enclosures

RCRA

- Tetra Tech EM Inc. 415 Oak Street, Kansas City, MO 64106 Tel 816.412.1741 Fax 816.410.1748 www.tetratech.com

REMOVAL SITE EVALUATION/PRELIMINARY ASSESSMENT ROTARY DRILLING SUPPLY SITE, INC. CRYSTAL CITY, MISSOURI CERCLIS ID No. MON000706201

Superfund Technical Assessment and Response Team (START) 3

Contract No. EP-S7-06-01, Task Order No. 0214

Prepared For:

U.S. Environmental Protection Agency Region 7 901 North 5th Street Kansas City, Kansas 66101

August 15, 2011

Prepared By:

Tetra Tech EM Inc. 415 Oak St. Kansas City, Missouri 64106 (816) 412-1741

CONTENTS

Section	<u>n</u>			Page
1.0	INTR	ODUCT	ION	1
2.0	SITE	DESCRI	PTION	1
	2.1	CITE I	LOCATION	1
	2.1		DESCRIPTION	
	2.2		ATIONAL HISTORY, PREVIOUS INVESTIGATIONS, AND WASTE	2
	2.3		ACTERISTICS	2
	2.4		LATORY INVOLVEMENT	
	2	TECC	ZIIOKI III, OZ I ZIIZIII	
		2.4.1	U.S. Army Corps of Engineers	3
		2.4.2	Missouri Department of Natural Resources	3
		2.4.3	U.S. Environmental Protection Agency	3
3.0	INVE	STIGAT	IVE EFFORTS – RSE/PA SAMPLING	4
	3.1	COLID	CE CAMPI DIC	4
	3.1		CE SAMPLINGACE WATER AND SEDIMENT SAMPLING	
	3.2	SUKF	ACE WATER AND SEDIMENT SAMPLING	0
4.0	HAZA	ARD RA	NKING SYSTEM FACTORS	14
	4.1	SOUR	CES OF CONTAMINATION	14
	4.2		NDWATER PATHWAY	
			W. L	
		4.2.1	Hydrogeological Setting	
		4.2.2	Groundwater Targets	
		4.2.3	Groundwater Pathway Conclusions	16
	4.3	SURF	ACE WATER PATHWAY	17
		4.3.1	Hydrological Setting	17
		4.3.2	Surface Water Targets	
		4.3.3	Surface Water Pathway Conclusions	
	4.4	SOIL I	EXPOSURE AND AIR PATHWAYS	20
5.0	EMER	RGENCY	RESPONSE CONSIDERATIONS	20
6.0	SUMN	MARY		21
	6.1	REMO	OVAL CONSIDERATIONS	22
	6.2	PRE-R	EMEDIAL CONSIDERATIONS	22
7.0	REFE	RENCES	S	23

CONTENTS (Continued)

APPENDICES

<u>Appen</u>	dix
A	FIGURES
В	PHOTOGRAPHIC LOG
C	FIELD LOGBOOK
D	GEOPROBE® BORING LOGS
Е	FIELD SHEETS AND CHAIN-OF-CUSTODY RECORDS
F	ANALYTICAL RESULTS
G	TABLES
Н	REMOVAL SITE EVALUATION FORM

TABLES

<u>Table</u>	$\underline{\mathbf{Pa}}$	ge
1	SUBSURFACE SAMPLE SUMMARY (FILL MATERIAL)	. 6
2	SURFACE SAMPLE SUMMARY (FILL MATERIAL)	.7
3	SURFACE WATER AND SEDIMENT SAMPLE SUMMARY	. 9

1.0 INTRODUCTION

The Tetra Tech EM Inc. (Tetra Tech) Region 7 Superfund Technical Assessment and Response Team (START) was tasked by the U.S. Environmental Protection Agency (EPA) Region 7 Superfund Division to conduct an integrated Removal Site Evaluation/Preliminary Assessment (RSE/PA) at the Rotary Drilling Supply, Inc., (RDS) site in Crystal City, Missouri. The project was assigned under START Contract No. EP-S7-06-01, Task Order No. 0214. The purpose of the RSE was to determine if a release of a hazardous substance, pollutant, or contaminant has occurred at the site that warrants a removal action. The purpose of the PA was to assess the relative threat to human health and the environment associated with actual or potential releases of hazardous substances at the site.

2.0 SITE DESCRIPTION

The location, description, operational history, previous investigations, and waste characteristics associated with the RDS facility, along with a summary of prior regulatory involvement, are discussed below.

2.1 SITE LOCATION

RDS is located at 1150 South Truman Boulevard in Crystal City, Missouri. The site is included on the 1982 Festus, Missouri, North and West U.S. Geological Survey (USGS) 15-minute topographic map (USGS 1982) (see Appendix A, Figure 1). The site lies within a "civil colony," defined as an area of land to which title was conferred by a predecessor government and confirmed by the U.S. Government after the territory in which it is situated was acquired by the United States (National Atlas 2010). The approximate geographic coordinates for the central portion of the site are 38.206211 degrees north latitude and 90.392061 degrees west longitude.

The site is located in the southern portion of Crystal City, and can be accessed from South Truman Boulevard, also known as Highway 61/67, from either the north or the south. Based on the USGS topographic map, the RDS property is about 400 feet above mean sea level (amsl). The topographic gradient of the site area is generally to the east-southeast toward Plattin Creek, which drains into the Mississippi River approximately 2.4 miles northeast of the site. A railroad track is on the east side of the property, and a tributary to Plattin Creek is on the south side. The site is located within the 100-year floodplain of the Mississippi River (Federal Emergency Management Agency [FEMA] 2011). The site encompasses approximately 13 acres, with various fill materials covering approximately 10 to 12 acres.

2.2 SITE DESCRIPTION

The 22 geologic formations exposed in Jefferson County range in age from Cambrian to Pennsylvanian (USDA 2011). The Cambrian rocks that crop out are composed of massive dolostone. The Ordovician system is exposed in almost three-quarters of the county; those rocks have had a significant role in the economic growth and development of the area. Quarries in limestone and dolostone have furnished building stones, aggregate, and cement for bridges, highways, and buildings. Sand mined in the St. Peter Sandstone is used by the glass industry (USDA 2011). The Devonian system is represented by a narrow band of sandstone, shale, and limestone that crosses the northeastern part of the county. The Mississippian system consists primarily of limestone and cherty limestone. The Pennsylvanian system consists of reddish-brown sandstone and bluish-gray to purple shale (USDA 2011).

Geologic units consist of flat to gently dipping bedrock dominated by dolostone, sandstone, and limestone formations. A slight regional dip of 1 to 2 degrees to the northeast has been altered by northwest-southeast trending folds and faults, where bedrock dip is over 10 degrees (USDA 2011).

Jefferson County is divided into seven physiographic regions. The regions have landscape shapes controlled by separate geologic units with variable bedding thickness, weatherability, and time of deposition. They vary from narrow ridgetops with steep hills and narrow valleys to gently rolling uplands. The highest point in the county is on Vinegar Hill, at 1,060 feet amsl. The lowest point is in the Mississippi River bottom, at 385 feet amsl (USDA 2011).

2.3 OPERATIONAL HISTORY, PREVIOUS INVESTIGATIONS, AND WASTE CHARACTERISTICS

The 13-acre facility parcel is currently owned by RDS. The business primarily performs sales and service for rotadrills and compressors. Coal fly ash generated by Ameren power plants, sandbags from the Midwest flood of 1993, and other fill materials have been deposited at the site (U.S. Army Corps of Engineers [USACE] 2010). No previous environmental investigations are known to have occurred on site. According to information in an EPA Region 7 Clean Water Act (CWA) Enforcement Program (WENF) trip report, the owner wants to develop the property for commercial use, including plans to lease or sell 2 acres of land for construction of a bank building (EPA 2010).

2.4 REGULATORY INVOLVEMENT

The following is a summary of prior regulatory involvement at the site.

2.4.1 U.S. Army Corps of Engineers

On March 1, 2010, USACE issued a Notice of Violation (NOV) to the owner. The notice stated that placement of the fill material on the property required a Section 404 Permit, and that Section 404 of the CWA had been violated (USACE 2010). The notice also stated that a review of resource maps and aerial photographs indicated the area contained a stream, forested wetland, and lake/wetland habitat, all of which are waters of the United States (USACE 2010).

2.4.2 Missouri Department of Natural Resources

A letter from the Missouri Department of Natural Resources (MDNR) dated June 30, 2010, was issued to the property owner, regarding "Improper Placement of Fly Ash Fill in a Wetland" (MDNR 2010a). The letter stated that on June 11, 2010, a site visit and meeting at the RDS property had been attended by representatives from MDNR, Ameren, and Mineral Resources Technologies (MRT), as well as the property owner. The letter also stated that MRT had provided the fly ash without cost to the property owner and paid for hauling the material to the site. Heavy equipment had been contracted by the property owner to distribute the material across the property and level it to its current elevation (MDNR 2010a). The letter also stated that fly ash is not considered "clean fill" under the Solid Waste Management Law and Regulation. The MDNR Solid Waste Management Program (SWMP) regulates fly ash as a solid waste (MDNR 2010a). The fly ash is considered a regulated solid waste and may be placed only in a permitted landfill or handled under the conditions of a properly managed beneficial use exemption or other permit exemption (MDNR 2010a).

2.4.3 U.S. Environmental Protection Agency

On April 15, 2010, personnel from USACE and the EPA Region 7 CWA Enforcement Program met with the owner at the site to discuss EPA's involvement in the matter regarding the fill material. According to USACE, fill material had been brought to the site after the flood of 1993, and about 5.8 acres of wetland had been filled since 2003.

The most recent fill material (fly ash) had originated from Ameren, a nearby coal-fired power plant. According to information in the WENF trip report, new fill material was observed along the north, east, and south perimeters of the property; the fill material was approximately 30 feet high (EPA 2010). The RDS site was entered into the Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) database in October 2010 as ID number MON000706201.

3.0 INVESTIGATIVE EFFORTS – RSE/PA SAMPLING

Section 3.0 discusses the current RSE/PA field sampling and associated quality assurance (QA)/quality control (QC) activities performed at the RDS facility.

The general objectives of the RSE/PA were to determine whether any threats to human health or the environment exist as a result of releases to soil and surface water, and to assess the need for a removal action. A site-specific Quality Assurance Project Plan (QAPP) in support of the RSE/PA activities had been approved by EPA prior to conducting the sampling (Tetra Tech 2010). Field activities were conducted in accordance with the approved QAPP, except where noted in this report.

START Team Members (STM) Ann Marie Pohlman, Christy Engemann, and Cosmo Canacari (Geoprobe® operator) conducted RSE/PA sampling activities on February 14 and 15, 2011. START contacted several landowners and obtained access to collect sediment and surface water samples from their properties prior to initiating the field activities.

Along with surface water and sediment sampling, field activities included sampling surface and subsurface fill material, consisting mostly of the coal fly ash. Subsurface sampling was conducted using Geoprobe direct-push technology (DPT) equipment.

A Site Layout Map is included as Figure 2 in Appendix A. Photographs documenting site activities are included in Appendix B, and sampling activities were recorded in a site logbook, a copy of which is included in Appendix C. Geoprobe[®] boring logs are included in Appendix D. Samples for analytical services request (ASR) 5198 were shipped overnight on February 16, 2011, via Federal Express to the EPA Region 7 laboratory. Field sheets and chain-of-custody records are included in Appendix E, and analytical results are included in Appendix F.

3.1 SOURCE SAMPLING

A biased or judgmental sampling scheme was followed to select source sampling locations at the RDS facility, based on site reconnaissance observations and background information about the facility. Sampling locations are illustrated on Figure 3 in Appendix A. On February 14, 2011, START collected six subsurface and three surface samples of fly ash fill material at the site. The subsurface samples were collected using a Geoprobe® DPT apparatus, and the surface samples were collected using a stainless steel garden trowel.

The Geoprobe® boring samples were collected at various depths ranging from 0 to 26 feet below ground surface (bgs), and contained visibly different layers of fill material. Most of the samples consisted of sandy, rocky, tan-colored fly ash. Other samples consisted of dark brown, fine-grained fill material, gravel, clay, sand, and shot rock. By use of a stainless steel garden trowel, surface samples were collected from 0 to 2 inches bgs at two locations, and one sample was collected from a small fly ash pile (see Tables 1 and 2).

For each sample, three 8-ounce (oz) jars were filled. The samples were placed into a cooler, where they were stored at or below 4 degrees Celsius (°C), pending submittal to the EPA Region 7 laboratory. The nine fly ash samples were submitted to the EPA Region 7 laboratory to be analyzed for Target Analyte List (TAL) metals (including mercury & boron), leachable metals according to the Toxicity Characteristic Leaching Procedure (TCLP), and polycyclic aromatic hydrocarbons (PAH).

Analytical Data Summary

Metals – Sample concentrations were compared to EPA Regional Screening Levels (RSL) for industrial and residential soils, and to Superfund Chemical Data Matrix (SCDM) benchmarks. Metals concentrations were also compared to available U.S. Geological Survey (USGS) county mean concentrations (USGS 2010). For those analytes where mean concentrations were provided by USGS, one or more source samples exceeded those concentrations for all elements except lead and manganese (See Table G-1 in Appendix G).

Arsenic was detected in all source samples collected at concentrations ranging from 3.8 mg/kg (RDS-SB-1) to 56.2 mg/kg (RDS-SB-6). Eight of the nine samples collected exceeded the Jefferson County mean arsenic concentration of 6.292 mg/kg. Arsenic exceeded the EPA RSLs for industrial and residential soils, and the SCDM cancer risk screening concentration (CR), in all samples.

Sample RDS-SB-4 collected from a depth of 24 to 26 feet bgs contained the highest concentrations of aluminum (62,000 mg/kg), beryllium (4.0 mg/kg), boron (590 mg/kg), chromium (59.1 mg/kg), cobalt (19.3 mg/kg), copper (142 mg/kg), manganese (223 mg/kg), nickel (50.7 mg/kg), and vanadium (167 mg/kg). Sample RDS-SB-6 collected from a depth of 13 to 15 feet bgs contained the highest concentrations of arsenic (56.2 mg/kg), cadmium (0.89 J mg/kg), lead (58.9 mg/kg), and zinc (137 mg/kg). Sample RDS-SB-5 collected from a depth of 0 to 2 feet bgs contained the highest concentrations of barium (4,350 mg/kg), and mercury (0.35 J mg/kg). The highest selenium concentration of 6.0 mg/kg was reported in sample RDS-SB-2 collected from a depth of 10 to 12 feet bgs. In general, the lowest concentrations for most analytes was in RDS-SB-1 collected from a depth of 0 to 2 feet bgs.

TABLE 1

SUBSURFACE SAMPLE SUMMARY (FILL MATERIAL) **RDS SITE** FEBRUARY 2011

Borehole EPA Sample Number Number		Boring Location	North Latitude	West Longitude	Sample Date	Sample Depth (ft bgs)	Sample Time
RDS-SB-1	5198-1	West-central part of the source pile; refusal at 4 feet bgs	38.20679	90.39288	2-14-11	0-2	09:37
RDS-SB-2	5198-2	8-2 175 feet east of RDS-SB-1		90.39229	2-14-11	10-12	10:15
RDS-SB-3	5198-3	175 feet east of RDS-SB-2	38.20671	90.39163	2-14-11	7-9	11:05
RDS-SB-4	5198-4	East-central part of the source pile	38.20656	90.39117	2-14-11	24-26	12:10
RDS-SB-5	5198-5	South-central part of the source pile, near equipment	38.20624	90.39207	2-14-11	0-2	12:45
RDS-SB-6	5198-6	North-central part of the source pile, near smaller piles	38.20701	90.39195	2-14-11	13-15	13:20

Notes:

bgs EPA Below ground surface

U.S. Environmental Protection Agency

Feet ft

RDS

Rotary Drilling Supply

SB

Soil boring

TABLE 2

SURFACE SAMPLE SUMMARY (FILL MATERIAL) RDS SITE FEBRUARY 2011

Sample Number	Sample Location		North Latitude	West Longitude	Sample Date	Sample Time
RDS-SF-1	5198-7	Small pile on north end of the property	38.20696	90.39188	2-14-11	13:39
RDS-SF-2	5198-8 Southeast side of property		38.20606	90.39151	2-14-11	13:50
RDS-SF-3 5198-9		West side of property	38.20658	90.39273	2-14-11	14:00

Notes:

EPA U.S. Environmental Protection Agency

RDS Rotary Drilling Supply

TCLP Metals – None of the samples exceeded any TCLP regulatory levels for metals (see Table G-2 in Appendix G). Based on the sampling conducted, the fill material does not classify as a RCRA characteristic waste for toxicity.

PAHs – All source samples were submitted for PAH analyses. No PAHs were detected at or above the reporting limits. Therefore, PAHs do not appear to be at levels of concern in the surface and subsurface fill materials.

3.2 SURFACE WATER AND SEDIMENT SAMPLING

During this investigation, surface water (SW) and collocated sediment (SD) samples were collected from four locations on the site property and two locations on adjacent properties. Table 3 lists these samples; the sample locations are illustrated in Figure 3 in Appendix A.

Four sample locations (RDS-SW/SD-3, RDS-SW/SD-4, RDS-SW/SD-5, and RDS-SW/SD-6) were selected along a small drainage pathway on the south and southeast sides of the property from which drainage eventually flows into Plattin Creek. The drainage pathway was just a few feet wide and contained less than a foot of water during sampling. One sample location (RDS-SW/SD-1) was located at the Elks' Lodge pond (Willers Lake), near the northeastern side of the property. Another sample location (RDS-SW/SD-2) was at an adjacent property on the eastern side of the railroad tracks. A field duplicate sample (RDS-SW/SD-2-FD) was also collected. Three background samples (RDS-SW/SD-7, RDS-SW/SD-8, and RDS-SW/SD-9) were collected upstream of the site at a pond on the western side of Highway 61/67, which is approximately 1/8 mile southwest of the property (see Figure 3). Because these samples were collected upstream of the facility, they are not likely affected by the source.

Surface water samples were collected by dipping a 1-liter container into the water and transferring the water to the requisite sample containers. All water samples were analyzed for TAL metals (including mercury and boron); those samples were collected in 1-liter cubitainers and preserved with nitric acid (HNO₃) to a pH <2. Three water samples (RDS-SW-1, RDS-SW-3, and RDS-SW-5) were also analyzed for PAHs; those were collected in 80-oz amber glass jugs.

TABLE 3

SURFACE WATER AND SEDIMENT SAMPLE SUMMARY

RDS SITE FEBRUARY 2011

Sample Identification	EPA Sample Number	Location Description	North Latitude	West Longitude	Sample Date	Sample Time
		Surface Water Samples				
RDS-SW-1	5198-101	Elks' Lodge pond (Willers Lake) near the northeastern part of the property	38.20676	90.39066	2/15/11	11:18
RDS-SW-2 RDS-SW-2-FD	5198-104 5198-104-FD	East side of railroad tracks by a culvert	38.20551	90.39093	2/15/11	12:55
RDS-SW-3	5198-102	West side of railroad tracks by a culvert	38.20546	90.39116	2/15/11	13:10
RDS-SW-4 5198-105		West side of railroad tracks (farthest north sampling point, except for Elks' Lodge pond)	38.20575	90.39108	2/15/11	13:30
RDS-SW-5	5198-103	Southeast side of pile	38.20556	90.39127	2/15/11	13:40
RDS-SW-6	5198-106	South side of pile, in standing water	38.20550	90.39191	2/15/11	13:50
RDS-SW-7	5198-107	Background sample from pond	38.20537	90.39525	2/15/11	14:20
RDS-SW-8	5198-108	Background sample from pond	38.20523	90.39478	2/15/11	14:30
RDS-SW-9	5198-109	Background sample from pond	38.20481	90.39478	2/15/11	14:45
		Sediment Samples				
RDS-SD-1	5198-16	Same as RDS-SW-1	38.20676	90.39066	2/15/11	11:18
RDS-SD-2 RDS-SD-2-FD	5198-10 5198-10-FD	Same as RDS-SW-2 and RDS-SW-2-FD	38.20551	90.39093	2/15/11	12:55
RDS-SD-3	5198-17	Same as RDS-SW-3	38.20546	90.39116	2/15/11	13:10
RDS-SD-4	5198-11	Same as RDS-SW-4	38.20575	90.39108	2/15/11	13:30
RDS-SD-5	5198-18	Same as RDS-SW-5	38.20556	90.39127	2/15/11	13:40
RDS-SD-6	5198-12	Same as RDS-SW-6	38.20550	90.39191	2/15/11	13:50
RDS-SD-7	5198-13	Same as RDS-SW-7-Background	38.20537	90.39525	2/15/11	14:20
RDS-SD-8	5198-14	Same as RDS-SW-8-Background	38.20523	90.39478	2/15/11	14:30
RDS-SD-9	5198-15	Same as RDS-SW-9-Background	38.20481	90.39478	2/15/11	14:45
		QA/QC Samples				
RDS-RB	5198-111	Rinsate Sample	NA	NA	2/14/11	13:18
RDS-112-FB	5198-112-FB	Field Blank	NA	NA	2/15/11	15:00

Notes:

EPA	U.S. Environmental Protection Agency	SD	Sediment
FB	Field blank	SW	Surface water
FD	Field duplicate	QA	Quality assurance
NA	Not applicable	QC	Quality control
RDS	Rotary Drilling Supply		

Sediment samples were collected from the edge of the drainage pathway and adjacent properties following collection of the surface water sample. These samples were collected with a stainless steel garden trowel, which was decontaminated between locations. All sediment samples were collected in 8-oz. jars and analyzed for TAL metals (including mercury and boron). Three sediment samples collected in additional 8-oz. jars (RDS-SD-1, RDS-SD-3, and RDS-SD-5) were also analyzed for PAHs. All samples were placed into a cooler, where they were stored at or below 4 °C, pending submittal to the EPA Region 7 laboratory.

<u>Analytical Data Summary - Surface Water</u>

Metals – Table G-3 in Appendix G presents a summary of the metals detected in the surface water samples. Results were compared to environmental benchmarks including aquatic benchmarks for fresh water from SCDM and to the concentrations of the background samples RDS-SW-7, RDS-SW-8, and RDS-SW-9, which were collected from a nearby pond on the western side of Highway 61/67.

Arsenic was detected in samples RDS-SW-3 and RDW-SW-4 at levels that exceeded the detection limits of the background samples. The detection limit was 1.0 microgram per liter (µg/L) for all three background samples. Arsenic was reported at 4.0 µg/L in sample RDS-SW-3 and 29.7 µg/L in sample RDS-SW-4. The samples did not exceed the acute SCDM Critical Maximum Concentration (CMC) or chronic Criterion Continuous Concentration (CCC) benchmark values.

Barium was detected in all downgradient samples. Results ranged from 95.0 μ g/L (RDS-SW-6) to 309 μ g/L (RDS-SW-4). Only the sample from RDS-SW-4 was at a concentration that was three times the background concentration of 54.7 μ g/L.

Boron was detected in all samples at levels that exceeded the detection limits of the background samples. Results ranged from 119 μ g/L (RDS-SW-6) to 4,040 μ g/L (RDS-SW-4). Background detection limits ranged from 38.3 to 50.2 μ g/L. Boron does not have any acute CMC or chronic CCC benchmark values with which to compare sample detection limits.

Chromium, cobalt, copper, and vanadium were only detected in sample RDS-SW-4 at 15.0, 3.4, 23.8 and 51.0 µg/L respectively. Chromium, cobalt and vanadium do not have any acute CMC or chronic CCC benchmark values with which to compare sample results. Copper has environmental benchmarks. The detection in sample RDS-SW-4 exceeded the benchmarks for acute CMC and chronic CCC.

Lead was detected in samples RDS-SW-1 and RDS-SW-4 at 9.9 μ g/L and 31.1 μ g/L, respectively. Background detection limits ranged from 1.0 to 2.6 μ g/L. Samples RDS-SW-1 and RDS-SW-4 exceeded

chronic CCC, which is 2.5 μ g/L. The acute CMC benchmark value was not exceeded in any of the samples.

Manganese was detected in all samples. Results ranged from 63.3 to 641 μ g/L. The highest background concentration was 88.5 μ g/L. Sample locations RDS-SW-1, RDS-SW-2, RDS-SW-2-FD, and RDS-SW-4 contained 641, 282, 267, and 421 μ g/L manganese respectively; which were three times the background concentration.

Nickel was detected in samples RDS-SW-1, RDS-SW-3, RDS-SW-2, RDS-SW-2-FD, and RDS-SW-4 at concentrations that exceeded the background detection limits. Results ranged from 3.4 μ g/L (RDS-SW-3) to 14.5 μ g/L (RDS-SW-4). Background detection limits ranged from 1.8 to 2.4 μ g/L. The results did not exceed the SCDM acute CMC or chronic CCC benchmark values.

Selenium was detected in samples RDS-SW-3, RDS-SW-2, RDS-SW-2-FD, and RDS-SW-4 at levels that exceeded the background samples detection limits. The detection limit was $5.0 \,\mu\text{g/L}$ for all three background samples. Results ranged from $7.0 \,\mu\text{g/L}$ (RDS-SW-2) to $25.7 \,\mu\text{g/L}$ (RDS-SW-4). All samples also exceeded the chronic CCC at $5.0 \,\mu\text{g/L}$. An acute CMC benchmark value is not established.

Zinc was detected in sample RDS-SW-4 at 48.3 μ g/L. Zinc was measured in background sample RDS-SW-7 at an estimated concentration of 7.7 μ g/L.

Many metals in sample RDS-SW-4 exceeded most benchmark values and at higher levels than in the other samples. Sample RDS-SW-1, from the Elks' Lodge pond, contained elevated boron, lead, manganese, and nickel concentrations. The pile is close to the sampling location, and even with the berm located there, the metals appear to have run off to some extent into the pond. All samples had some elevated metals concentrations.

PAHs – No PAHs were detected in any of the three surface water samples analyzed for PAHs (RDS-SW-1, RDS-SW-3, and RDS-SW-5). Therefore, PAHs do not appear to be of concern in the surface water samples. The three background samples were not analyzed for PAHs.

Analytical Data Summary - Sediment

Metals – Table G-4 in Appendix G presents a summary of metals detected in the sediment samples. Results were compared to background sample concentrations in RDS-SD-7, RDS-SD-8, and RDS-SD-9, which had been collected from a nearby pond (upstream) on the western side of Highway 61/67. No benchmarks exist for sediment samples. All sediment samples collected downgradient of the RDS site

contained one or more metals at concentrations significantly above background concentrations. Only the metals that were at least three times the background concentration (if the analyte was detected in background), or above the detection limit of the background samples (if the analyte was not detected), are discussed below.

Aluminum was detected in samples RDS-SD-2, RDS-SD-4, and RDS-SD-5 at 31,000, 44,700 and 31,200 mg/kg respectively. These concentrations were three times the background aluminum concentration of 7,070 mg/kg found in sample RDS-SD-7.

Arsenic was detected in samples RDS-SD-2, and RDS-SD-4 at 20.0 and 26.8 mg/kg respectively. These concentrations were three times the background arsenic concentration of 4.3 mg/kg found in sample RDS-SD-9.

Barium was reported at elevated concentrations in all downgradient samples except RDS-SD-1, at concentrations ranging from 491 mg/kg in sample RDS-SD-6 to 3,050 mg/kg in sample RDS-SD-4. These concentrations were three times the background barium concentration of 87.2 mg/kg found in sample RDS-SD-8.

Berylium was detected in samples RDS-SD-2, RDS-SD-4, and RDS-SD-5 at 1.7, 2.5, and 1.5 mg/kg respectively. These concentrations were three times the background beryllium concentration of 0.50 mg/kg found in sample RDS-SD-8.

Boron was reported at elevated concentrations in all downgradient samples except RDS-SD-1, at concentrations ranging from 23.7 mg/kg in sample RDS-SD-3 to 193 mg/kg in sample RDS-SD-4. Boron was not detected in background with a maximum sample quantitation limit of 13.0 mg/kg.

Cadmium was detected in all samples at levels that exceeded the detection limits of the background samples. Results ranged from an estimated 0.68 mg/kg (RDS-SD-3) to 2.2 mg/kg (RDS-SD-2-FD). Background detection limits ranged from 0.43 to 0.65 mg/kg.

Chromium and copper were detected in sample RDS-SD-11 at 46.1 and 103 mg/kg respectively. Background concentration for chromium and copper were highest in sample RDS-SD-8 at 10.7 and 33.3 mg/kg respectively.

Lead was reported at elevated concentrations in all downgradient samples except RDS-SD-4 and RDS-SD-5, at concentrations ranging from 107 mg/kg in sample RDS-SD-6 to 637 mg/kg in sample

RDS-SD-2-FD. Lead was detected in background sample RDS-SD-8 at 28.7 mg/kg. The maximum lead concentration found in a source sample was 58.9 mg/kg.

Magnesium was reported at elevated concentrations in all downgradient samples except RDS-SD-1, at concentrations ranging from 10,900 mg/kg in sample RDS-SD-6 to 18,100 mg/kg in sample RDS-SD-4. Magnesium was detected in background sample RDS-SD-9 at 3.170 mg/kg.

Manganese was detected in samples RDS-SD-2 and its field duplicate RDS-SD-2-FD and RDS-SD-5 at concentrations of 1,510, 866, and an estimated 1,230 mg/kg respectively. These concentrations were all three times the background concentration of 265 mg/kg measured in RDS-SD-9.

Mercury was detected only in sample 5198-18 (RDS-SD-5) at an estimated 0.19 mg/kg. Mercury was not detected in any of the background samples.

Nickel was detected in samples RDS-SD-2-FD and RDS-SD-4 at concentrations of 31.3 and 35.5 mg/kg respectively. These concentrations were three times the background concentration of 10 mg/kg measured in RDS-SD-8.

Selenium was detected in samples RDS-SD-2, RDS-SD-2-FD, and RDS-SD-4. Results in these samples ranged from 7.1 mg/kg (RDS-SD-2-FD) to 16.5 mg/kg (RDS-SD-2). Selenium was not detected in background sediments. Background detection limits ranged from 3.0 to 4.5 mg/kg.

Sodium was detected in samples RDS-SD-2, RDS-SD-2-FD, RDS-SD-4, RDS-SD-5, and RDS-SD-6. Results in these samples ranged from 857 mg/kg (RDS-SD-6) to 5,350 mg/kg (RDS-SD-4). Sodium was not detected in background. Background detection limits ranged from 428 to 649 mg/kg.

Vanadium was detected in samples RDS-SD-2 and RDS-SD-4 at concentrations of 76.6 and 93.9 mg/kg respectively. These concentrations were three times the background concentration of 23.2 mg/kg measured in RDS-SD-7.

Zinc was detected in samples RDS-SD-1, RDS-SD-2-FD, RDS-SD-5 and RDS-SD-6 at concentrations of 183, 197, 156, and 204 mg/kg respectively. These concentrations were three times the background concentration of 50.1 mg/kg measured in RDS-SD-8.

The high results in these samples compared to the background detection limits suggest that releases of these metals to the environment may have occurred.

PAHs – No PAHs were detected in samples RDS-SD-1, RDS-SD-3, and RDS-SD-5, which were the only sediment samples analyzed for PAHs. Therefore, PAHs do not appear to be of concern in the sediment samples.

4.0 HAZARD RANKING SYSTEM FACTORS

This section discusses the sources of contamination and the contaminant migration pathways evaluated under the Hazard Ranking System (HRS).

4.1 SOURCES OF CONTAMINATION

The coal fly ash pile covers approximately 10 to 12 acres. The depth of the pile is approximately 30 feet at its deepest point. The length of the fly ash pile (north to south) is approximately 500 feet, and the width (west to east) is approximately 525 feet. The volume of the pile was calculated by determining the volume of a triangular prism: $\frac{1}{2}$ base x height x length, which is 525 feet x 500 feet x 30 feet = 7,875,000/2 = 3,937,500 cubic feet (ft³), which is equivalent to approximately 145,833 cubic yards (yd³).

4.2 GROUNDWATER PATHWAY

This section discusses the groundwater pathway.

4.2.1 Hydrogeological Setting

The 22 geologic formations exposed in Jefferson County range in age from Cambrian to Pennsylvanian (USDA 2011). The Cambrian rocks that crop out are composed of massive dolostone. The Ordovician system is exposed in almost three-quarters of the county; those rocks have had a significant role in the economic growth and development of the area. Quarries in limestone and dolostone have furnished building stones, aggregate, and cement for bridges, highways, and buildings. Sand mined in the St. Peter Sandstone is used by the glass industries (USDA 2011). The Devonian system is represented by a narrow band of sandstone, shale, and limestone that crosses the northeastern part of the county. The Mississippian system consists primarily of limestone and cherty limestone. The Pennsylvanian system consists of reddish-brown sandstone and bluish-gray to purple shale (USDA 2011).

Geologic units consist of flat to gently dipping bedrock dominated by dolostone, sandstone, and limestone formations. A slight regional dip of 1 to 2 degrees to the northeast has been altered by northwest-southeast trending folds and faults, where bedrock dip is over 10 degrees (USDA 2011).

Jefferson County is divided into seven physiographic regions. The regions have landscape shapes controlled by separate geologic units with variable bedding thickness, weatherability, and time of deposition. They vary from narrow ridgetops with steep hills and narrow valleys to gently rolling uplands. The highest point in the county is on Vinegar Hill, at 1,060 feet amsl. The lowest point is in the Mississippi River bottom, at 385 feet amsl (USDA 2011).

The site is located in the east-central part of Missouri in the Salem Plateau groundwater province, which surrounds the St. Francois Mountains and includes all or parts of 49 counties—an area of about 24,760 square miles. Groundwater resources in the Salem Plateau groundwater province are the most extensive in the State. Two major aquifers underlie this region—the St. Francois aquifer and the Ozark aquifer (MDNR 2011a).

Overlying the St. Francois aquifer is 100 to 500 feet of low-permeability carbonate rock and shale, including the Derby-Doerun dolomites and Davis Formation. Together, they form the St. Francois confining unit. Though these units can yield small quantities of water, they are not considered a significant aquifer. Instead, they greatly limit the interchange of water between the two aquifers (MDNR 2011a).

Thick Ordovician- and Cambrian-age dolomite and sandstone units comprising the Ozark aquifer overlie the St. Francois confining unit. The Ozark aquifer consists of bedrock units from the top of the Kimmswick Limestone to the base of the Potosi Dolomite. Throughout much of the province, the Ozark aquifer is generally 800 to 1,000 feet thick, but it reaches thickness exceeding 2,000 feet locally. It is considered an unconfined aquifer in most of this region (MDNR 2011a).

The Ozark aquifer is the most widespread and widely used aquifer in Missouri. It supplies nearly all of the water-supply needs in this province. Depending on well depth and location, private domestic wells a few hundred feet deep can easily produce water ample for domestic purposes, while larger-diameter wells 1,200 to 1,500 feet deep typically can produce from 300 to more than 1,000 gallons of water per minute (MDNR 2011a).

4.2.2 Groundwater Targets

Crystal City encompasses a total area of 3.7 square miles. The population of Crystal City was 4,247 during the 2000 census. The population density is 1,136.7 people per square mile (Wikipedia 2011). Crystal City has three municipal wells that serve 4,010 people (MDNR 2011b). The wells listed come from the Center for Applied Research and Environmental Systems (CARES) database from the University of Missouri (MU). The wells listed are: Ranney–Well #1, Hospital–Well #2, and Well #3 (MU 2011).

X9004.10.0214.000

Ranney-Well#1 is 90 feet deep and is in the alluvial aquifer. Hospital—Well #2 is 750 feet deep and is in the Ozark aquifer. Well #3 is 555 feet deep and is in the Ozark aquifer (MU 2011). The City supplies drinking water to the RDS site.

Residences within the 4-mile target distance limit (TDL) for the site are largely supplied by municipal or domestic wells. Figure 5 in Appendix A shows the 4-mile groundwater TDL for the RDS site, the registered wells within the TDL, and the coverage areas for the wells. The MDNR Certified Wells database for registered wells lists 238 domestic wells and 16 municipal wells within the 4-mile radius of the RDS site (MDNR 2010b).

The number of domestic wells listed within 0.5- to 1-mile radius of the site is 3. Domestic wells listed within a 1- to 2-mile radius of the site are 54. Within a 2- to 3-mile radius of the site are 73 domestic wells. The number of domestic wells listed within a 3- to 4-mile radius of the site is 108 (MDNR 2010b).

The number of municipal wells listed within 0.5- to 1-mile radius of the site is 3. Municipal wells listed within a 1- to 2-mile radius of the site are 6. Within a 2- to 3-mile radius of the site are 4 municipal wells. The number of municipal wells listed within a 3- to 4-mile radius of the site is 3 (MDNR 2010b).

The domestic wells within the 0.5- to 1-mile radius range in depth from 240 to 657 feet and have static water levels (SWL) ranging from 0 to 245 feet bgs. The wells were constructed between 1987 and 2005. Two of the wells are located northeast of the site, and one is located west of the site (MDNR 2010b).

The number of domestic wells within the 1- to 4-mile radius increases with distance from the site. The depth of the deepest well in the 1- to 2-mile radius is 610 feet. The SWLs range from 0 to 365 feet bgs. The wells were constructed between 1987 and 2008. Domestic wells within this radius range from west to southwest and east to southeast (MDNR 2010b). The depth of the deepest well in the 2- to 3-mile radius is 590 feet. The SWLs range from 0 to 280 feet bgs. The wells were constructed between 1987 and 2008. Most of the domestic wells within this radius range from northwest to southwest. The depth of the deepest well in the 3- to 4-mile radius is 540 feet. The SWLs range from 0 to 310 feet bgs. The wells were constructed between 1987 and 2009. Most of the domestic wells within this radius range from west to northwest (MDNR 2010b).

4.2.3 Groundwater Pathway Conclusions

No groundwater or drinking water samples were collected during the RSE/PA sampling activities. No drinking water wells are located on the western side of Plattin Creek within the city limits of Crystal City.

Private drinking water wells are located on the eastern side of Plattin Creek, between the site and the Mississippi River. Groundwater likely travels to the east toward the Mississippi River. The nearest domestic wells are located 0.5 to 1 mile east, with most of the wells within the 1- to 2-mile radius east of the site. The probability of a release from the site (via leaching) to an aquifer used to supply nearby drinking water wells is low.

4.3 SURFACE WATER PATHWAY

Based on the USGS topographic map, the RDS property is approximately 400 feet amsl. The topographic gradient of the area is generally to the east-southeast, toward Plattin Creek.

The annual precipitation for Jefferson County is about 38 inches, with about 45 percent (17 inches) falling in April through September. The heaviest one-day rainfall on record was 4 inches on October 20, 1983. The average seasonal snowfall is about 19 inches, with the highest seasonal snowfall depth of 19 inches at any one time during the period of record (USDA 2011).

4.3.1 Hydrological Setting

Drainage from the RDS site is to the east-southeast, toward the perennial stream Plattin Creek, located approximately 0.5 mile to the east. Plattin Creek flows to the northeast and drains into the Mississippi River, approximately 2 miles northeast of the RDS facility (see Appendix A, Figure 4). The site is located within the 100-year floodplain of the Mississippi River (FEMA 2011).

For the RSE/PA, six collocated surface water and sediment samples were collected either on the RDS site or on adjoining properties (see Appendix A, Figure 3). RDS-SW/SD-1 were collected from the Elks' Lodge pond (Willers Lake) near the northeastern side of the site. RDS-SW/SD-2 were collected from the east side of railroad tracks by a culvert. Field duplicates were collected here as well. RDS-SW/SD-3 were collected from the west side of the railroad tracks. RDS-SW/SD-4 were also collected from the west side of the railroad tracks (farthest north sampling point, except for Elks' Lodge pond). RDS-SW/SD-5 were collected from the southeast side of the fly ash pile (low-flow stream water). RDS-SW/SD-6 were collected from the south side of the pile (standing water). Samples RDS-SW/SD-7, RDS-SW/SD-8, and RDS-SW/SD-9 (background samples) were collected upgradient of the site from a pond on the west side of Highway 61/67.

4.3.2 Surface Water Targets

Plattin Creek is a perennial stream and flows generally northeast into the Mississippi River. Drinking water intakes within the 15-mile TDL of the probable point of entry (PPE) to Plattin Creek include two water supplies along the Mississippi River. The first water supply downstream is an industrial water supply at the River Cement Company. The second water supply downstream is a public water supply at the Ameren UE Rush Island Plant (EPA 2009). No drinking water intakes are present along Plattin Creek to the Mississippi River.

The site is located in a wetland designated as a freshwater forested shrub, according to the U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) (USFWS 2011a). The designated code for the site is PFO1A, which means it is in the Palustrine System, forested class, broad-leaved deciduous subclass, water regime which is temporarily flooded (USFWS 2011b). The Palustrine System includes all non-tidal wetlands dominated by trees, shrubs, emergents, mosses, or lichens. The forested class is characterized by woody vegetation 6 meters high or taller. The subclass broad-leaved deciduous includes woody angiosperms with relatively wide, flat leaves that are shed during the cold or dry season. The water regime, classified as temporarily flooded, is characterized by surface water present for brief periods during the growing season, but the water table usually lies well below the soil surface for most of the growing season (USFWS 2011b).

The Elks' Lodge pond is classified as a freshwater pond, according to the USFWS NWI (USFWS 2011a). The designated code for the pond is PUBG, which means it is in the Palustrine System, unconsolidated bottom class, water regime which is intermittently exposed (USWFS 2011b). The Palustrine System is explained above. The unconsolidated bottom class includes all wetlands and deepwater habitats with at least 25 percent (%) cover of particles smaller than stones (less than 6 to 7 centimeters) and a vegetative cover less than 30%. The water regime, classified as intermittently exposed, is characterized by surface water present throughout the year, except in years of extreme drought (USFWS 2011b).

Endangered and proposed as endangered species known or likely to occur in Jefferson County, Missouri, include: the Indiana bat (endangered), Pallid sturgeon (endangered), snuffbox (proposed as endangered), and five other listed endangered or proposed as endangered species (USFWS 2011c). The presence of these species within the site area has not been verified; nor have critical habitat areas been delineated. Recreational fishing takes place in Plattin Creek, the Elks' Lodge pond, and in the Mississippi River. Commercial fishing may occur in the Mississippi River.

4.3.3 Surface Water Pathway Conclusions

Six collocated surface water/sediment and one field duplicate samples were collected in or adjoining the site. In sediment, most analytes detected at highest concentrations were in sample 5198-11 (RDS-SD-4). The highest level reported for each metal meeting the observed release criteria are listed below in mg/kg:

- Aluminum 44,700
- Arsenic –26.8
- Barium –3,050
- Beryllium –2.5
- Boron 193
- Cadmium − 2.0
- Chromium 46.1
- Copper 103
- Lead 637

- Magnesium 18,100
- Manganese 1,510
- Mercury 0.19
- Nickel 35.5
- Selenium 16.5
- Sodium 5,350
- Vanadium 93.9
- Zinc –204.

Because the source pile is located directly on top of wetlands, a release from it would qualify as a release to sensitive environments. Indeed, the high metals concentrations in these samples compared to the background detection limits suggest that releases of these metals to the environment have occurred.

No PAHs were detected in samples RDS-SD-1, RDS-SD-3, and RDS-SD-5 which were the only sediment samples analyzed for PAHs. Therefore, PAHs do not appear to be of concern in the sediment samples.

The drainage area that is directly south-southeast of the site drains to Plattin Creek. The tributary drains into Plattin Creek on the east side of the railroad tracks, approximately 500 feet from the site. Plattin Creek then drains into the Mississippi River.

Six collocated surface water and one field duplicate samples were collected in or adjoining the site. Sample 5198-105 (RDS-SW-4) had the highest levels of analytes reported of all samples, except for one. Manganese was reported at 641 μg/L in sample 5198-101 (RDS-SW-1). Arsenic, barium, boron, chromium, cobalt, copper, lead, nickel, selenium, vanadium, and zinc were detected in sample 5198-105 (RDS-SW-4). The metals detected and the highest level reported for each are listed below in μg/L:

- Arsenic 29.7
- Barium 309
- Boron 4,040
- Chromium − 15.0
- Cobalt − 3.4
- Copper 23.8

- Manganese 641
- Lead 31.1
- Nickel 14.5
- Selenium 25.7
- Vanadium 51.0
- Zinc 48.3.

Sample 5198-105 (RDS-SW-4) contained many metals that exceeded most benchmark values and at higher levels than in the other samples. Sample 5198-1 (RDS-SW-1), from the Elks' Lodge pond, had elevated barium, boron, lead, manganese, nickel, and zinc concentrations. The pile is close to the sampling location, and even with the berm located there, the metals appear to have run off to some extent into the pond. All samples contained some elevated metals concentrations.

No PAHs were detected in any of the three surface water samples analyzed for PAHs (5198-101/RDS-SW-1, 5198-102/RDS-SW-3, and 5198-103/RDS-SW-5). Therefore, PAHs do not appear to be of concern in the surface water samples. The three background samples were not analyzed for PAHs.

4.4 SOIL EXPOSURE AND AIR PATHWAYS

Arsenic was detected in all surficial fill samples at concentrations between 8.9 and 18.2 mg/kg. These arsenic concentrations exceeded EPA's RSLs for industrial and residential soil of 1.6 mg/kg and 0.39 mg/kg, respectively, and the SCDM CR of 0.43 mg/kg. Only one arsenic concentration was less than the USGS mean arsenic concentration of 6.292 mg/kg reported for Jefferson County (USGS 2010). The majority of the surface fill samples also exceeded the USGS background levels for aluminum, calcium, copper, iron, magnesium and sodium. No county mean concentrations were provided by USGS for barium, boron, chromium, cobalt, nickel, or vanadium. These concentrations indicate releases of those metals may have occurred at the site. No PAHs were detected at or above the reporting limits in the surface fill samples.

The site is located in a commercial area without any residences nearby, and potential for exposure to workers is minimal. However, the RDS facility is not fenced, so exposure to contaminated fill to trespassers or visitors may be possible. The air exposure pathway was not evaluated. Air samples were not collected for the RSE/PA, based on the low probability of airborne contaminants at levels of concern at the site.

5.0 EMERGENCY RESPONSE CONSIDERATIONS

The National Contingency Plan [40 Code of Federal Regulations 300.415 (b) (2)] authorizes EPA to consider emergency response actions at those sites that pose an imminent threat to human health or the environment. Although the RDS facility is not fenced, allowing potential exposure to areas of contaminated fill on the site property, no Superfund emergency response activities appear warranted.

6.0 SUMMARY

The RDS site is located at 1150 South Truman Boulevard in Crystal City, Missouri. The site is included on the 1982 Festus, Missouri, North and West USGS 15-minute topographic map (USGS 1982) (see Appendix A, Figure 1). The site lies within a "civil colony," defined as an area of land to which title was conferred by a predecessor government and confirmed by the U.S. Government after the territory in which it is situated was acquired by the United States (National Atlas 2010). The approximate geographic coordinates for the central portion of the site are 38.206211 degrees north latitude and 90.392061 degrees west longitude.

The site covers approximately 13 acres and is currently owned by RDS. The business primarily performs sales and service for rotadrills and compressors. Coal fly ash generated by Ameren power plants, sandbags from the flood of 1993, and other materials have been used as fill materials on the site (USACE 2010). No cleanup activities are known to have occurred at the site. According to information in an EPA Region 7 CWA Enforcement Program trip report, the property owner wants to develop the area for commercial use, including the lease/sale of 2 acres for construction of a bank building (EPA 2010).

On March 1, 2010, USACE issued a NOV to the property owner. The notice stated that the fill activities that had occurred on the property required a Section 404 Permit, and that past filling activities violated Section 404 of the CWA (USACE 2010). The notice also stated that a review of resource maps and aerial photographs indicated that the area of concern contained a stream, forested wetland, and lake/wetland habitat. All of these areas are considered waters of the United States (USACE 2010).

The general objectives of this RSE/PA were to determine whether any threats to human health or the environment exist as a result of releases to soil and groundwater, and to assess the need for a removal action.

The pertinent HRS factors associated with the RDS site are as follows:

- The source pile is located directly on top of wetlands, and therefore a release from it would qualify as a release to sensitive environments.
- Surface and subsurface source samples (fly ash) exceeded ecological and health-based benchmarks for metals. The metals of concern include arsenic, copper, lead, and selenium.

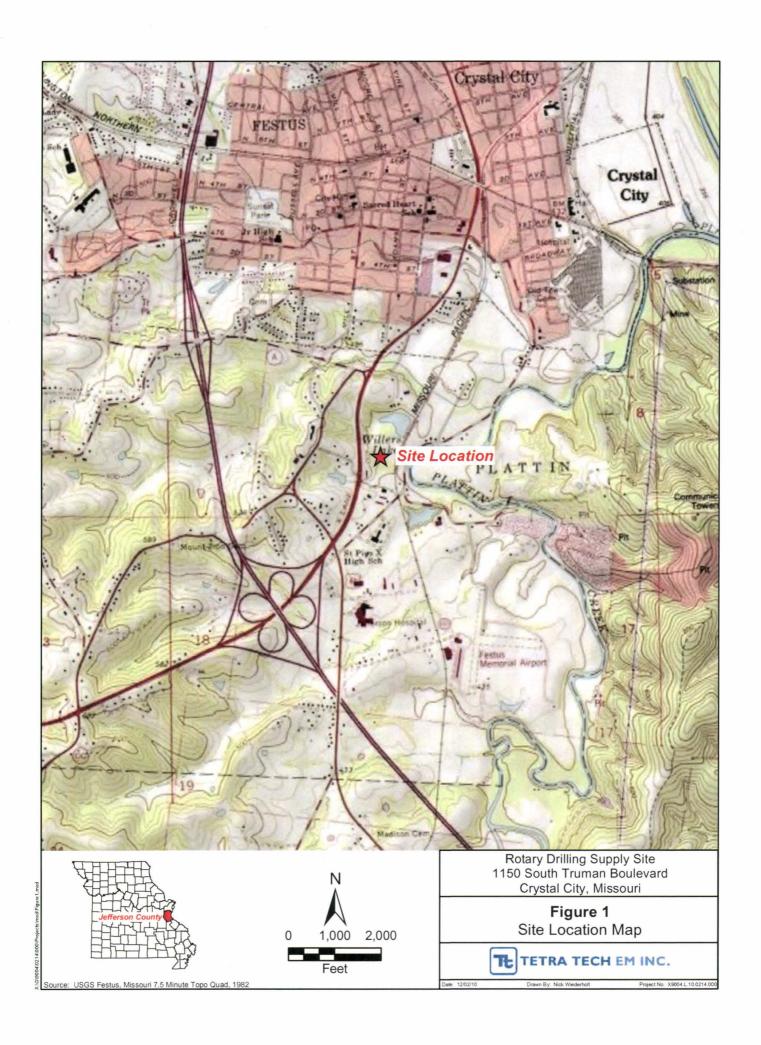
- All metal analyzed for with the exception of antimony, beryllium, cadmium, mercury, silver and thallium were reported in one or more surface water sample at concentrations significantly above background levels. Copper, lead, and selenium exceeded ecological-based benchmarks in surface water samples. Sample RDS-SW-1, collected from the Elks' Lodge pond near the site, contained elevated boron, lead, manganese, and nickel concentrations. The fly ash pile is close to that sampling location, and even with a berm to restrict runoff in the area, it appears that metals from the site may have impacted the pond. Multiple metals in RDS-SW-4, collected near the southeast corner of the fly ash pile, exceeded detection limits and health-based benchmarks. Therefore, metals from the pile appear to have been released to surface water.
- Elevated levels of metals have also been detected in sediment samples collected near the site.

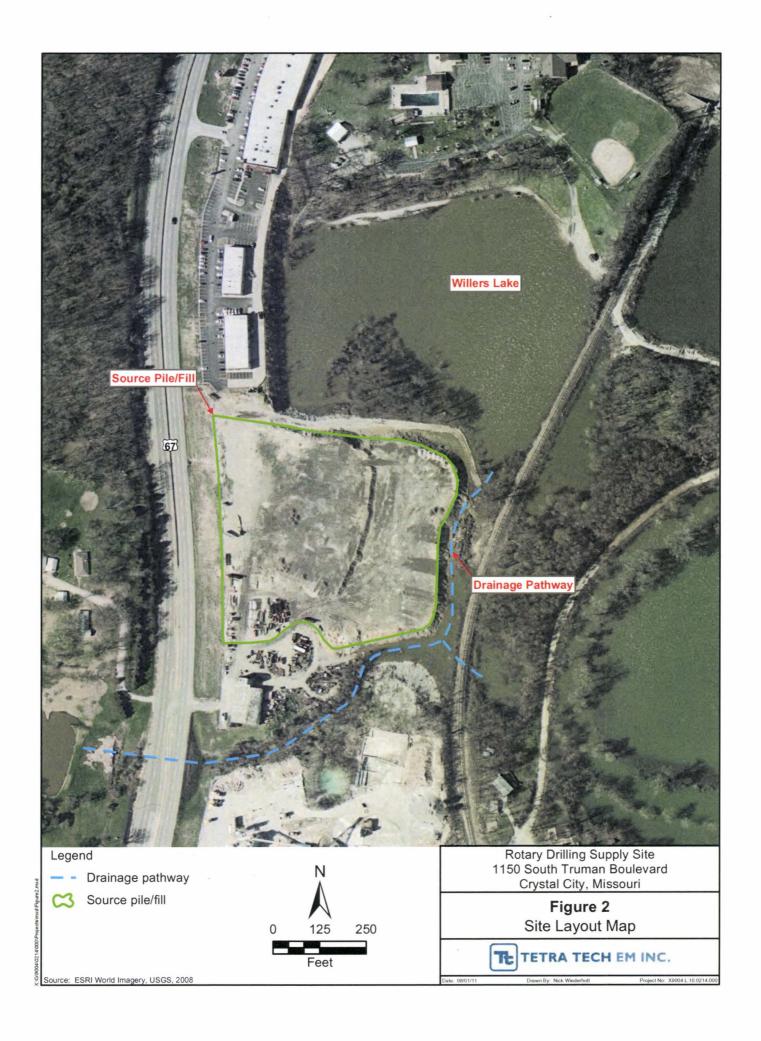
6.1 REMOVAL CONSIDERATIONS

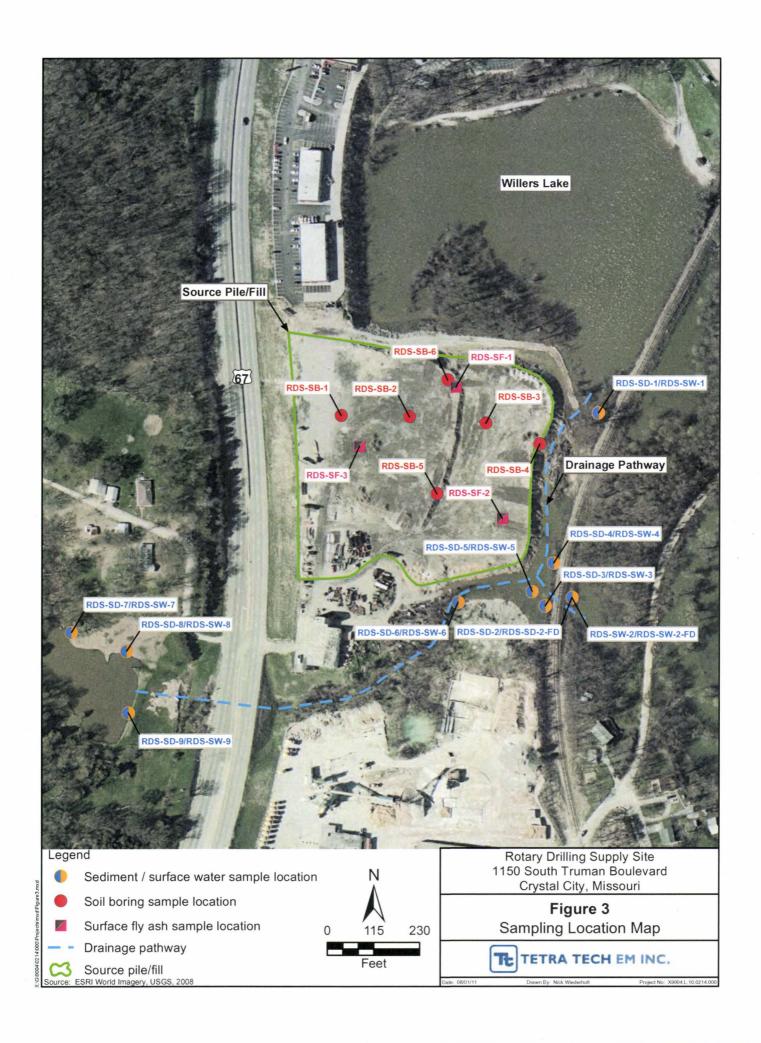
Analytical results obtained during the RSE/PA should be evaluated by EPA risk assessors to determine whether the levels and extent of contamination at the site present an unacceptable risk to human health and the environment that warrants a removal action. If a removal action is deemed necessary, it could include installation of restrictive fencing to prevent exposure to fly ash used as fill material, as well as excavation, capping, or treatment of approximately 145,833 yd³ of fly ash on the site property. A RSE form has been completed for the site and is included as Appendix H.

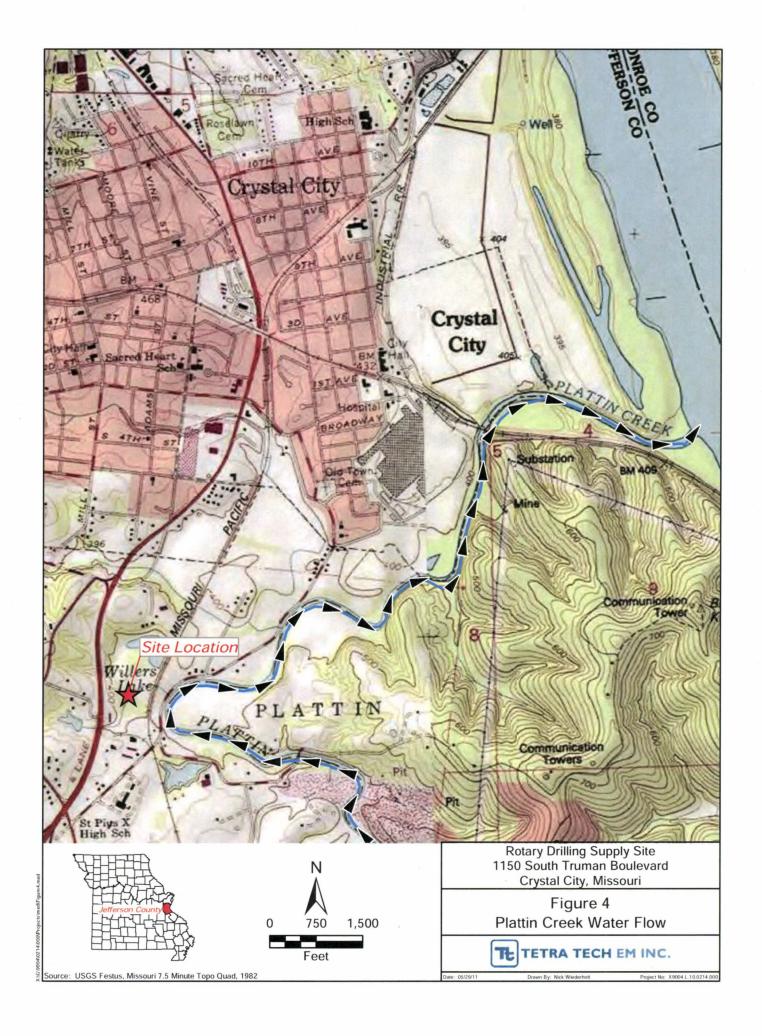
6.2 PRE-REMEDIAL CONSIDERATIONS

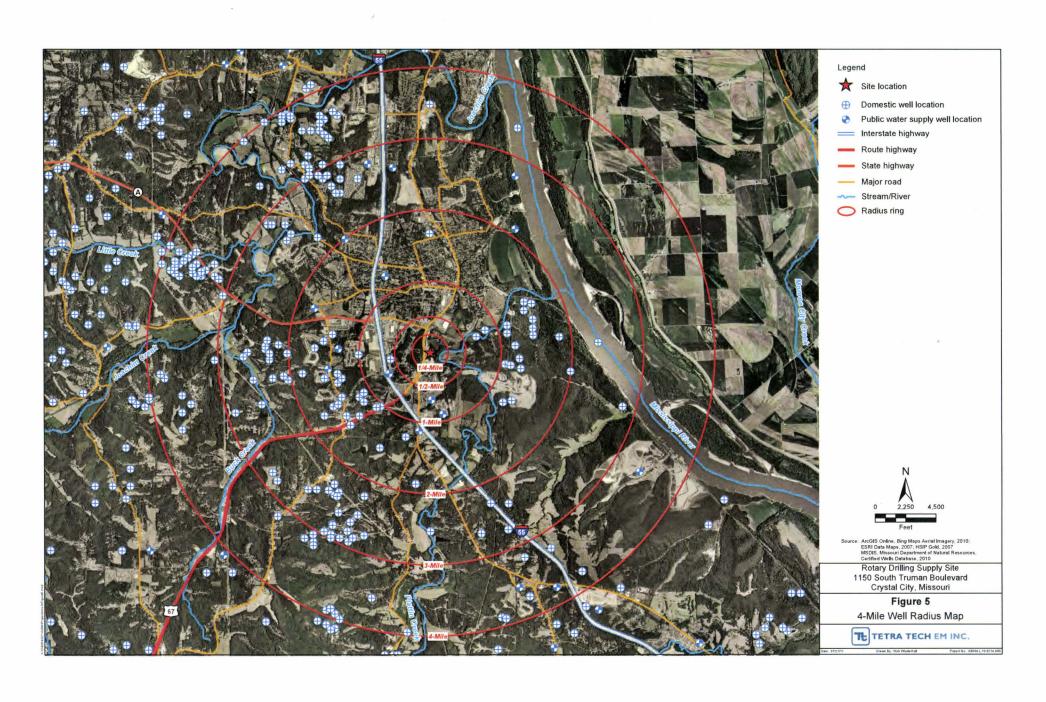
Additional surface water and sediment sampling is recommended for EPA considerations, to determine whether a release to Plattin Creek has occurred. Groundwater sampling is not recommended because probability of risk from groundwater is low, considering the contaminants and distances to wells.


7.0 REFERENCES


- Federal Emergency Management Agency (FEMA). 2011. Flood Insurance Rate Map (FIRM) Jefferson County, Missouri and Unincorporated Areas. Accessed February 3, 2011. On-line address: http://map1.msc.fema.gov/idms/IntraView.cgi?KEY=44574197&IFIT=1
- Missouri Department of Natural Resources (MDNR). 2010a. Letter regarding improper placement of fly ash fill in a wetland. From Eric E. Gramlich. To Darriel Coleman. June 30.
- MDNR. 2010b. Certified Wells Database. On-line address: http://www.msdis.missouri.edu/datasearch/metadata/utm/st_well_certified.xml
- MDNR. 2011a. Water Resources Center. Accessed February 2, 2011. On-line address: http://www.dnr.mo.gov/env/wrc/groundwater/education/provinces/salemplatprovince.htm
- MDNR. 2011b. Drinking Water Branch-Water System Details. Accessed April 6, 2011. On-line address:


 http://www.dnr.mo.gov/DWW/JSP/WaterSystemDetail.jsp?tinwsys_is_number=2850&tinwsys_st_code=MO&wsnumber=MO6010198
- National Atlas. 2010. Public Land Survey System of the United States. Accessed November 16, 2010. On-line address: http://nationalatlas.gov/metadata/plss00p020.faq.html
- Tetra Tech EM Inc. (Tetra Tech). 2010. Quality Assurance Project Plan. December 16.
- U.S. Army Corps of Engineers (USACE). 2010. Notice of Violation (NOV). March 1.
- U.S. Department of Agriculture (USDA). 2011. Soil Survey of Jefferson County, Missouri. Accessed April 4, 2011. On-line address: http://soildatamart.nrcs.usda.gov/Manuscripts/MO099/0/Jefferson_MO.pdf
- U.S. Environmental Protection Agency (EPA). 2004. Superfund Chemical Data Matrix (SCDM) Table. Washington, D.C. January.
- EPA. 2009. Greater St. Louis Sub-Area Contingency Plan. June.
- EPA. 2010. Region 7 Clean Water Act (CWA) Enforcement Program Trip Report. April 15.
- U.S. Fish and Wildlife Service (USFWS). 2010. NWI Wetland Code Interpreter. Accessed July 20, 2011. On-line address: http://www.fws.gov/wetlands/Data/wetlandcodes.html. Last Updated: March 11, 2010.
- USFWS. 2011a. National Wetlands Inventory (NWI). Accessed July 20, 2011. On-line address: http://137.227.242.85/wetland/
- USFWS. 2011b. Missouri-County Distribution of Federally-Listed Threatened, Endangered, Proposed and Candidate Species. Accessed July 20, 2011. On-line address: http://www.fws.gov/midwest/endangered/lists/missouri-cty.html. Last Updated: June 2011.
- U.S. Geological Survey (USGS). 1982. 15 Minute Series Topographic Map of Festus, Missouri, Crystal City, Missouri, North and West Quadrangles.


- USGS. 2010. Average Concentrations of Elements in Jefferson County, Missouri. On-line address: http://tin.er.usgs.gov/geochem/county.php?place=f29099&el=As&rf=east-central
- University of Missouri (MU). 2011. Center for Applied Research and Environmental Systems (CARES). Accessed July 22, 2011. On-line address: http://maproom.missouri.edu/maparchive/swip2009/temp/report_6010198.pdf?0.4376293
- Wikipedia. 2011. "Crystal City, Missouri." Accessed July 19, 2011. On-line address: http://en.wikipedia.org/wiki/Crystal_City, Missouri


APPENDIX A
FIGURES

APPENDIX B PHOTOGRAPHIC LOG

Rotary Drilling Supply Site 1150 S. Truman Blvd. Crystal City, MO 63019

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows the coal fly ash pile looking northeast.	1
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: Northeast	PHOTOGRAPHER	Ann Marie Pohlman	11/30/10

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows the drainage pathway on the east side of the property.	
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: South	PHOTOGRAPHER	Ann Marie Pohlman	11/30/10

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a berm between the coal fly ash pile and the Elks' pond (Willers Lake).	3
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: Northwest	PHOTOGRAPHER	Ann Marie Pohlman	11/30/10

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows the coal fly ash pile, facing east.	4
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: East	PHOTOGRAPHER	Ann Marie Pohlman	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows smaller coal fly ash piles on the property, facing northeast.	5
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: Northeast	PHOTOGRAPHER	Ann Marie Pohlman	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a Geoprobe soil sample from RDS-SB-2, from a depth of 0 to 4 feet below ground surface (bgs).	6
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: NA	PHOTOGRAPHER	Ann Marie Pohlman	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows Geoprobe sampling at location RDS-SB-2.	7
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: South	PHOTOGRAPHER	Ann Marie Pohlman	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a Geoprobe soil sample being collected at RDS-SB-3, from a depth of 7 to 9 feet bgs.	8
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: NA	PHOTOGRAPHER	Ann Marie Pohlman	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows Geoprobe soil samples from RDS-SB-6.	9
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: NA	PHOTOGRAPHER	Ann Marie Pohlman	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a Geoprobe soil sample being collected at RDS-SB-6, from a depth of 13 to 15 feet bgs.	10
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: North	PHOTOGRAPHER	Ann Marie Pohlman	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a source/fill sample being collected from the fly ash pile.	11
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: Southwest	PHOTOGRAPHER	Christy Engemann	2/14/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a sediment sample being collected from the Elks' pond (Willers Lake).	12
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: North	PHOTOGRAPHER	Ann Marie Pohlman	2/15/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a surface water sample being collected from sample location RDS-SW-4.	13
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: Southeast	PHOTOGRAPHER	Ann Marie Pohlman	2/15/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows the coal fly ash pile and a drainage pathway on the south side of the property.	14
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: East	PHOTOGRAPHER	Ann Marie Pohlman	2/15/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows the pond on the west side of Highway 61/67, where background sediment and surface water samples were collected.	15
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: West	PHOTOGRAPHER	Ann Marie Pohlman	2/15/11

EPA TASK ORDER NO.	DESCRIPTION	This photograph shows a background sediment sample being collected.	16
9004.L.10.0214.000	CLIENT	EPA	Date
Direction: Southwest	PHOTOGRAPHER	Ann Marie Pohlman	2/15/11

APPENDIX C
FIELD LOGBOOK

Kotary Drilling Supply Site 11-30-10 0640 Depart St. Lines for De Soto field Mici. 0700 Porivent Desuto held Mice. Have a Site recon walk at Kotary Prilling Supply Site in Crystal City. EPA project manager Jamie Bernard-Drakey and Jim Silver will be an Sife with STAKT Project Manager Ann Marie Yohlman + STAKT field tean Lauren Jackson. Worken HASP for Sampling achieves for this project + 90 to Wal-Mart for Supplies for project. 1235 Depart Desph Field Mile 1245 Arnve at Rotary Drilling Supply. Wait for STARCT Jackson to grown HARP t Jame Bernad-Drakey & Jim Silver (EPA). 1255 START Jackson, EPA Jamie Bernard-Drakey & Jonsofer Milk START Jackson reads & signs HASP; goint metwith Damel Coleman -Onnerof Rotary Dulling Suppy Site Amp + Adam Breeze Darrel Colemany lawyer. Et Bernard-Drakey, + Silver + START Pohlman & Jackson Walk the property. This site is in violation of Clean Water Act (ChA). Putang Coal Fly ash in wetland area EPA + START locate Streams to fond (on nearby paperty), go over where I sample to what for. Will collect beoppishe Samples of pile (fly ash) in 5 le locations (na days with). These samples will be analyzed for TCLP metals, TAL metals (plus boron), + PAHs, Othersamples include Sourcepitelfill Sarles. Seducit + scirtule water sampling for the first y base of sampling. Maybe will go back to geophola be ground water a durking welly tack saying. Repaids on what we find in frust phase of surling! 1435 Moster Institute 1505 ENL of day. Aun / 11-30-10

1-5-11 Kotary Drilling Supply Site 0645 Depart St. Louis for Deboto held Mico. Arrive at Desarofield Mice. bring to met DPA Jim Silver, to get 0715 access to properties for Sampling. There are four properties to get access to. Since last entry, STAKT prepared QAPP+ HASP for Sampling + PASP for Sampling activities will begin on January 25, 2011. Sampling should take 2 days to cay let on 1-25-11 + 1-26-11. Depart Pests Mie for Crystal City, 3335 franch EIB look to get access. No me here to to other propertes a cuss to property at 824 Lyw Dr. Keal 18 take Agent will give to owners, Elks holge burnt hun Cayle of week you wall 0945 Arry Backat Desut held Mice Will look up phone number to get residental properties access. Eve phon numbers to Jim: Jun Silver got aholder James Leiben & spoke to Gladys Cook, James Lauben wants to sign access. Gladys Cook wants to talk to Son tist. STAPET Pohlman departs Desoto Milit & gets access signed by Janoshup James Laiben Arrive back at Desoto field Mice. Jimstock that Gladys Cook wants & sign access. Will Stop by on way home & Loope Maccess. Depart Dubto. Drop 1/6 access at Glady's Cox 4 house in Crystal City. She wants to viad access to trans make a copy pit. Will muilto Jun. Silver at funtan Mice location. 145 of sife furst laws. 1445 End of day. tu Wolfm 1-5-11

Rotary Drilling Supply

Left St. Line for Debts field Mice. Frel vehicle in festus musey dann.

Arrive at Desots field Mice. Lab supplies for sampling are being delivered to day. Lefting HASP and attachment all lined up; STAKT Philman Signed HASP yesterday-1-5-11.

Downway on this for day. (lel

2 men from

•

Kotary Drdling Supply 2-14-11 Depart St. Louis for Desoti tild office. Ketrel rental vehicle on mydan, 235 Arriveat Desta field Mile. Activities today will be Collecting beginste + Swake Samples from the fly ash pile. START team members Christy Englinann + Cosmo Canacari Will mets TART Yohlman here at 1800. Others EPA member Jim Silver will be on site as well. a begant feld office from Arrive at sike, Noty Mr. Coleman that we are aske. Measure fill men tut. N-S is soofeet & them E to W is SJSfeet, Glettory Sugles at from middle OFF Wis 263 feet + them N+S 15 114 feet m Nendt 175 m Southend Collect RDS-SB-1 in far mest side of Pile. Collect 0-2 foot me U freet (0-2 feet) with 50% recovery. 38. 20679, 90. 39288. Take 4 ruth atthis location. 1015 Collect RDS-Sta down to 12 test. 175 tastof first surple 38, 20677 -90. 39229. Take 14 photos at this location. Collete Sauple from 10-12 toot dother Collect KD1 - SB-3 dunt Cotteet 1205-515-3 downtocarte 165 Collect KD1-58-3. Collection 7-9 foot depth of durker wound fill Source collected 175 Eact eastly RD+ Se2 Coordinates an: 38, 20671, -90,39162 Take lle phore at this location 1210 allect RDS-SB-4. Callect Sample from 24-26 foot depth of thy ask fell-wit of light tancolorid. Sample whileted in east side of cage of the by piles. Coordnates are! 38 20656, -90, 39117. Take 13 photes at the laston. 1248 Collect RDS-SB-5. Collect Saurie from 0-2 feet depth. Source collected on South Side of property by equipment Coordinates and 38. 20024, -91.3920 Take 3p botos 6-4 top Actual LUB-on the botom in Same photos 1320 Callect LDS-SB-6. Callect sample from 17-15 feet. Sample located on north-side of property heat to fill piles Coodinates and 38. 20701, -90, 39195. Take A Sometime phytes. 1318 Collect rusale South of generate conformat.

2-14-11 Rotary Dalling Supply
Collect Surface 5 m fly ash Sample on northernal of Pile in property.
Conductor are: 38.26696, -90.39188 Photodocument location 1350 Collect Surface Soil Sample RDS-SF-2 on SE side of property. Coordinate: 38.20406 N, -90.39/5/W
1400 Collect Surface Hyalh sample KDS-SF-3 on West side of property.
Coordinate act. 38.20688, -90. 9273. Photo document locations
Photo document of Saylo (rection RDS-SF-20+SAYRDS-SF-2. 1430 Krive back at held poice. Unpack samples into whole 1515 M-site you St Louis. 1545 Ord of day.

Kotary Drilling Supply 2-15-11 Depart St. Louis for Desoto tield Muci. Arrive at Deloto held Muce. Activities for today include Sediment + Surface water sungling, along with background samples. START Ishlman prepares for the day's activities START Engermanian SH. START deturning not enough sampling just, So START Organism M to Term Tech Mill infenton to get more START Palmen & Jimshier depart Delets feld Micipar KOI. Arrive at Kotary Drilling Supply, STAKET Pohlmant OK Silver Petent Sayling locations for Sidural + surface mater. START Engement back male with extra jour containers. Collect Surface maker of sedurant sample at Elks Pand. Collect PAtts + INSTIMSO SPIKE, samples have as well Conduited are 38.20676. -90, 39ddo. Photo document were RDS-SD-1 and RDS-SW-1 ان luch 12: to to surry locations. 1255 Collect Sedent & Surface water & duplicate Sarle on east Side of vailroad track Lyculvert. Coordinate are: 38.205514 -90. 39093. Photo dolument am. RDS-SD-2, RDS-SD-2FD, RDS-SW-2 13: Well sedement & surface water Samples for 1/AHS in addition to metals in 2015-50-2-FD west Side of vailroad backs by culvant. Coordinates are: 38. 20546, -91.39216. Photo documentain. RDS-50-3 + LDS-5W-3 1330 Collect Sediment + Surface water samples from west side of varload pracks Furthest harten of the sampling yourts Cixcipt for take Pand! No PATRICULATEDS SW 4 Attric Courter. Coordunks and 38. 20575, -90. 39/08. Photodoment ann. FDS-50 4 13th Collect schimat & souther maker duringly & PAHS pasmitheast side Aprila RDS 30 5 Coor dually are: 38, 20556, -90. 34127. Photo decurent area 1550 Collect Sediment + Sintre water for metals. No PAtterollected at trust scaling FDS->03 Lacabin is in Sinth side Ut vile intrad Standing warm are: Coordinates and. 38, 20550, 90.39191. Phase drump any Sandkysin and Sedents of

Rotary Drilling Supply
1420 Collect Surface & Sedimint background saiple same frampord symmatics fran projection west side of 61/67. First say le will with in Southwest side of green twhete Stedenhartmasturn Sidi of prod bordinas me: 38, 20537, -20 39525. Photodounantain. RDS SD-stand RDS SW-St. 7 Collect Surface & Sedment background Saure from pand across 1430 frangrapas on westsker (el167. Samplecellected north side of and Satis of residuce. Conductes and 38, 20523, -90, 39478. Must dillumentaria RDS-SD-8 and RDS-SW-8 Collect Surface of Sedemid Nacional Source from cast side of sond in modelle Coordinates are: 38. 20/81, -10. 39478. Photo document over All 3 background Saugles analyzedow TAL wetall (wellooking bond nursey) EDS-SW19 Arrive back at field Mile in Desoto. Begin preparing Sawlesofulab 1505 Shipment tempty at Vehicle. Collected Field Blank at 1500. Missite for St. lais. End of day. 2-1511

Letary Brilling Supply Sike

Arrive at Terratecholycie in Fentan. Look for bubble wrap at Cooler to Ship samples to lab. Only thank cooler-will buy bubble wrap at Wal-Mort.

Storks team number Christy brighnam on six at Tetratech. Leave for DeSoto to prepare Samples for ASK 5198 for lab Shipment. On way sum, Stopat Wal-Mort in Festus to get bubble wrap, i.e., + ziplick bags.

Arrive at Desoto field Mice. Prepare ASK 5198 for lab Shipment.

Arrive at Desoto field Mice. Prepare ASK 5198 for lab Shipment.

Arrive backat Tetrate. Mice in Parts. In writing in project for to chy.

2.16.11

APPENDIX D

GEOPROBE® BORING LOGS

								Borii	ng Log Forn	n
Site	Nan	ne:	Rota	arv Dri	Ilina Sı	upply Site			Boring Number	: RDS-SB-1
						2/14/2011			Doming Manipol	1.100 00 1
Date Drilled (Start/Finish): 2/14/2011 Drilling Method: Geoprobe Boring										
			pan			ull Environn	nental [*]	Technol	ogies	
	_) feet				2 9 40 00 80	Total Depth:	4 feet
Coo					679, -9	90.39288				
Dep	th to	Wa	ter:	NA					Geologist:	Ann Marie Pohlman & Christy Engemann
100					04.L.1	0.0214.000			Weather:	Sunny, windy, 40s
			>	5					I	
Sample Interval	Interval	Soil Recv.	Core Recv	Field Screening	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log		Description and Remarks
	П								0-4 feet: Fill - gr	avel limestone. 50% recovery. Refusal at 4 feet.
					Γ					
					_					
					-	er.				ar .
	Ш				_					
					5	ń				
					⊢	~				
					_					
					L					
					. 10			2		
							12			
					-					
					L					*
					L					
					–				991	
			8		-			-		
					L					
					-					
					-					
					L				-	
										S S S S S S S S S S S S S S S S S S S

								Borii	ng Log Forn	n
Site	Naı	me:	Rot	arv Dr	illina Sı	upply Site			Boring Number	:: RDS-SB-2
						2/14/2011			Doming manner	1100 00 2
		Met				probe Bori	ng			
		Con			-	gull Enviror		I Techn	ologies	
				0 feet					Total Depth:	12 feet
Cod	rdir	nates	s:	38.2	0677, -	90.39229				
Dep	th t	o Wa	iter:	NA			G		Geologist:	Ann Marie Pohlman & Christy Engemann
Pro	ject	Num	ber	X900	04.L.10	.0214.000			Weather:	Sunny, windy, 40s
Sample Interval	Interval	Soil Recv.	Core Recv.	Field	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log		Description and Remarks
	Т		П						0-4 feet: Fill - gra	ayish-tan, rocky, sandy.
					_ _ _ _ _ 5				A O foots Fill and	
_ _ _ _ _ _ _								,	4-8 feet: Fill - gra	
					_ _ _ _ _ 15				8-12 feet: Sandy sample from 10-	r, rocky, tan. Appears native at 12 feet. Collect 12 feet.
					-					

Г	Boring Log Form													
5	Site	Na	me:	Rot	ary [Oril	ling S	upply Site			Boring Number	: RDS-SB-3		
			illed					2/14/2011		•	_			
1	Drill	ing	Met	hod			Ged	probe Borir	ng					
		_	Con	-	-		Sea	gull Environ	menta	l Techno				
			on:								Total Depth:	28 feet		
			nates				671, -	90.39163						
	-		o Wa				11.4	0.0044.000			Geologist:	Ann Marie Pohlman & Christy Engemann		
Ľ	roj	ect	Nun	nber	: _X	900)4.L.1	0.0214.000			Weather:	Sunny, windy, 40s		
Sample Interval Soil Recv. Core Recv. Field Screening Depth (Feet) (yaous us (Feet) Lithology Graphic Log												Description and Remarks		
		T		П							0-4 feet: Sandy,	rocky, tan. 75% recovery.		
							_ 5 _ 10 _ 10 _ 20 _ 25 _ 25				8-12 feet: Silty, s range. 100% reconstruction 12-16 feet: Sand	y, tan. 75% recovery. y, tan. 75% recovery. xy (gravel) until the last 18 inches, which is		

	Boring Log Form													
								-	Boring Number	: RDS-SB-4				
				rt/Fini		2/14/2011								
		Meth				probe Borin		I Techno	ologies					
Drilling Company: Seagull Environmental Technologies Elevation: ~400 feet Total Depth: 28 feet														
Coordinates: 38.20656, -90.39117														
Depth to Water: NA Geologist: Ann Marie Pohlman & Christy Engemann														
Proj	ect	Num	ber:	X900	4.L.10	.0214.000		Weather:	Sunny, windy, 40s					
Sample Interval	Interval	Soil Recv.	Core Recv.	Field	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log		Description and Remarks				
	Т		Ť			Í			0-4 feet: Fly ash	fill. Light gray and tan. 80% recovery.				
					_ _ _ _ _ 5				,					
					-				4-8 feet: Same a	as above. 60% recovery.				
					-					v.				
	П				-									
	П													
	П				10									
	П								8-12 feet: Same	e as above. 50% recovery.				
	П		П		Γ.									
					-									
					<u> </u>					Δ.				
					L									
	П		П		15									
										ash fill. Rocky, tan and light brown. 75%				
•	П	8			F !				recovery.	ach fill Light grov van wet 100% recevery				
					<u> </u>				10-20 leet. Fly a	ash fill. Light gray, very wet. 100% recovery.				
	П				L									
					L									
	Ш				20									
									20-24 feet: Fly a	ash fill. Llight tan. 60% recovery.				
					-									
			丄	-	<u> </u>									
					L									
\top					25					¥				
	25				25				24-28 feet: Wet,	, light tan, fly ash fill to 26 feet. Clay at 26-28				
					-					mple from 24-26 feet.				
					L									
	\sqcup				L									
			14											
			14		30									

Site Name: Rotary Drilling Supply Site Boring Number: RDS-SB-5	
Date Drilled (Start/Finish): 2/14/2011 Drilling Method: Geoprobe Boring Seagull Environmental Technologies Elevation: ~400 feet Coordinates: 38.20624, -90.39207 Depth to Water: NA	
Date Drilled (Start/Finish): 2/14/2011 Drilling Method: Geoprobe Boring Seagull Environmental Technologies Elevation: ~400 feet Coordinates: 38.20624, -90.39207 Depth to Water: NA	
Drilling Method: Drilling Company: Seagull Environmental Technologies Elevation: -400 feet Coordinates: 38.20624, -90.39207 Depth to Water: Project Number: Description and Remarks Color (Munsell or Rock) Description and Remarks O-4 feet: Fly ash fill. Light gray and tan. 70% recovery. 4-8 feet: Same as above. 90% recovery. 8-12 feet: Shot rock.	
Description and Remarks Seagull Environmental Technologies	
Elevation: -400 feet 38.20624, -90.39207 Depth to Water: NA 79004.L.10.0214.000 Project Number: Poly and Remarks or Rock) Project Number: Poly and Remarks or Rock	
Coordinates: Depth to Water: Project Number: X9004.L.10.0214.000 Weather: MA Weather: Description and Remarks O-4 feet: Fly ash fill. Light gray and tan. 70% recovery. 4-8 feet: Same as above. 90% recovery. 4-8 feet: Shot rock.	
Project Number: X9004.L.10.0214.000 Weather: Sunny, windy, 40s Description and Remarks O-4 feet: Fly ash fill. Light gray and tan. 70% recovery. sample from 0-2 feet. 4-8 feet: Same as above. 90% recovery. 8-12 feet: Shot rock.	
Project Number: X9004.L.10.0214.000 Weather: Sunny, windy, 40s Description and Remarks O-4 feet: Fly ash fill. Light gray and tan. 70% recovery. sample from 0-2 feet. 4-8 feet: Same as above. 90% recovery. 8-12 feet: Shot rock.	nann
0-4 feet: Fly ash fill. Light gray and tan. 70% recovery. sample from 0-2 feet. 4-8 feet: Same as above. 90% recovery. 10 8-12 feet: 8-10.5 feet: Fly ash fill. 10.5-11 feet: Sand. feet: Shot rock.	16 16
0-4 feet: Fly ash fill. Light gray and tan. 70% recovery. sample from 0-2 feet. 4-8 feet: Same as above. 90% recovery. 10 8-12 feet: 8-10.5 feet: Fly ash fill. 10.5-11 feet: Sand. feet: Shot rock.	
sample from 0-2 feet. 4-8 feet: Same as above. 90% recovery. 10 8-12 feet: 8-10.5 feet: Fly ash fill. 10.5-11 feet: Sand. feet: Shot rock.	

	Boring Log Form													
Site	Na	me.	Rot	any D	rilling S	upply Site			Boring Number	" RDS-SR-6				
					nish):	2/14/2011		-	Dornig Hamber	. 100 00 0				
		Met	•		•	oprobe Bori	na			-				
		Con				agull Enviror		al Techn	ologies					
	-			0 fee		agan Environ	miorite		Total Depth:	16 feet				
		nates	_			90.39195				10 1001				
				NA					Geologist:	Ann Marie Pohlman & Christy Engemann				
						0.0214.000			Weather:	Sunny, windy, 40s				
		Ι.		_	-	ı			- I					
Sample Interval	Interval	Soil Recv.	Core Recv	Field	Depth (Feet)	Color (Munsell or Rock)	Lithology	Graphic Log		Description and Remarks				
	Т		Ť			·	_		0-4 feet: Fly ash	fill. 100% recovery.				
					\vdash									
	П		П		-									
	П		П											
	П		П		Γ									
	П		П		-									
	П		П		5				4.0 facts Elseach	- 511 to 7 foot Others 511 of 7 0 foot 750/				
	П		П		L				recovery.	n fill to 7 feet. Other fill at 7-8 feet. 75%				
	П		П						lecovery.					
	П		П		\vdash									
	Н		П		-									
	П		П		L									
	П		П		10				8					
	Н		П			1			8-12 feet: Fly as	sh and other fill at 10-12 feet. 50% recovery.				
	П		П		\vdash									
	П		Ш	4	L									
П	11													
Ш	Ш				-									
ட					15									
										ash and other fill. Silty sand at 15-16 feet.				
		1			Г				Collect sample fi	rom 13-15 feet.				
					-									
					L									
										*				
					Г									
					<u> </u>									
					L									
				1	Γ									
					-									
				1	-									

APPENDIX E FIELD SHEETS AND CHAIN-OF-CUSTODY RECORDS

ASR Number:	5198 Sample Num	ber: 1	QC Cod	de: Matr	ix: Solid Tag	ID: 5198-1
Project Desc:	JBDA7X900 Rotary Drilling Supply	/Inc - PA s		_	Jamie Bernard-	Drakey
City:	Crystal City		ampimg		Missouri	
Program:					,	
	ROTARY DRILLING SU	JPPLY INC -	SITEWI	DE .	Site ID: A7X9	Site OU: 00
Location Desc:	Soil sample					
		Externa	al Samp	le Number:	RDS-SB-	· <u> </u>
Expected Conc	(or Circle 0	One: Low	Medium	High)	Date	Time(24 hr)
Latitude:		Samı	ole Coll	ection: Start:	2/14/11	<u>9</u> :37
Longitude:				End:	_/_/_	_:_
Laboratory An	alyses:					
Container	Preservative	Holding	Time	Analysis		
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soi	l or Sediment	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	s by ICP-AES	
1 - 8 oz glass	4 Deg C	180	Days	1 TCLP Metals in	Soil	
1 - 8 oz glass	4 Deg C	14	Days	1 PAH's in Soil b	y GC/MS	
1 - 8 oz glass	None	28	Days	1 TCLP Mercury	in Soil	
Sample Commo	ents:		. 1			
(N/A)		38.21	Du79	N		

-90,39288 W

ASR Number:	5198 Sample Numb	er: 2	QC Cod	le: Matr	ix: Solid Tag	j ID: 5198-2
Project ID:	JBDA7X900		Pro	ject Manager:	Jamie Bernard	i-Drakey
	Rotary Drilling Supply	Inc PA s	ampling			
-	Crystal City			State:	Missouri	
Program: Site Name:	ROTARY DRILLING SUF	PPLY INC -	SITEWI	DE .	Site ID: A7X	9 Site OU: 00
Location Desc:	Soil sample					
		Externa	ıl Samp	le Number:	RDS-5B	-2
Expected Conc	(or Circle Or	ne: Low I	Medium	High)	Date	Time(24 hr)
Latitude:		Samp	le Coll	ection: Start:	214/11	10:15
Longitude:				End:	//	;
Laboratory An	alyses:		5-1-			
Container	Preservative	Holding	Time	Analysis		
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soi		
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	s by ICP-AES	
1 - 8 oz glass	4 Deg C	180	Days	1 TCLP Metals in	Soil	
1 - 8 oz glass	4 Deg C	14	Days	1 PAH's in Soil b	y GC/MS	
1 - 8 oz glass	None	28	Days	1 TCLP Mercury	in Soil	
Sample Commo		2				
(N/A)	38	1,20Le7	71)		
	- 91	1, 2047 1, 39 22	9 W) ,		

ASK Number:	5198 Sample Numb	er: 3 QC Co	de: Matrix: Solid Tag	ID: 5198-3
•	JBDA7X900 Rotary Drilling Supply		ject Manager: Jamie Bernard-	Drakey
City:	Crystal City	inc i A sampling	State: Missouri	
	Superfund ROTARY DRILLING SUF	PPLY INC - SITEWI	DE Site ID: A7X9	Site OU: 00
Location Desc:	Soil sample		*	
æ ,		External Samp	ole Number: <u>KDS - SB -</u>	3
Expected Conc	(or Circle O	ne: Low Medium	High) Date	Time(24 hr)
Latitude:		Sample Coll	ection: Start: 2/14///	<u>11:05</u>
Longitude:			End://_	_:_
Laboratory An	alyses:			
Container	Preservative	Holding Time	Analysis	
1 - 8 oz glass	4 Deg C	28 Days	1 Mercury in Soil or Sediment	16
1 - 8 oz glass	4 Deg C	180 Days	1 Metals in Solids by ICP-AES	
1 - 8 oz glass	4 Deg C	180 Days	1 TCLP Metals in Soil	
1 - 8 oz glass	4 Deg C	. 14 Days	1 PAH's in Soil by GC/MS	V
1 - 8 oz glass	None	28 Days	1 TCLP Mercury in Soil	
Sample Commo	ents:			
(N/A)	3	8.20671 N	*	·
	-9	8.20671 N 0.39163 W		P.

ASR Number:	5198 Sample Numb	er: 4	QC Cod	le: Matr	ix: Solid Tag	ID: 5198-4
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply	Inc PA s		-	Jamie Bernard	-Drakey
			, ,		Missouri	
Program:	Superfund		*			х.
Site Name:	ROTARY DRILLING SUP	PPLY INC -	SITEWI	DE .	Site ID: A7X9	Site OU: 00
Location Desc:	Soil sample					
. "		Externa	al Samp	le Number: _	RDS-SB	-4
Expected Conc	(or Circle Or	ne: Low	Medium	High)	Date	Time(24 hr)
Latitude:		Samı	ole Coll	ection: Start:	21411	12:10
Longitude:				End:	_/_/_	:
Laboratory An	alyses:					
Container	Preservative	Holding	Time	Analysis		
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soil	or Sediment	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	s by ICP-AES	
1 - 8 oz glass	4 Deg C	180	Days	1 TCLP Metals in	Soil	
1 - 8 oz glass	4 Deg C	14	Days	1 PAH's in Soil b	y GC/MS	
1 - 8 oz glass	None	. 28	Days	1 TCLP Mercury i	n Soil	
Sample Comme	ents:					
(N/A)		38.2	0454	N		

-90.39117 W

ASR Number:	5198 Sample Numb	er: 5	QC Cod	e: Matr	ix: Solid	Tag ID: 5198-5
Project ID:	JBDA7X900 Rotary Drilling Supply	Inc - PA s		ject Manager:	Jamie Ber	nard-Drakey
City:	Crystal City	Inc. TAS	amping	State:	Missouri	
Program: Site Name:	ROTARY DRILLING SUF	PPLY INC -	SITEWII	DE	Site ID:	A7X9 Site OU: 00
Location Desc:	Soil sample				an an annual in the second	
		Externa	al Samp	le Number: _	RDS-	SB-5
Expected Conc	(or Circle Or	ne: Low	Medium	High)	Date	Time(24 hr)
Latitude:		Samı	ple Colle	ection: Start:	2/14/1	1 12:45
Longitude:				End:	_//	_:_
Laboratory An	-					
Container	Preservative	Holding		Analysis		,
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soil		
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid		
1 - 8 oz glass	4 Deg C	180	Days	1 TCLP Metals in		
1 - 8 oz glass	4 Deg C	14	Days	1 PAH's in Soil b		
1 - 8 oz glass	None	28	Days	1 TCLP Mercury i	n Soil	
Sample Commo	ents:					
(N/A)		38.	206	24. N		
		- 9D.	392	24° N .		

ASK Number:	3190 3	ampie Number:	. 0	QC CO	de: Ma	itrix: Solid Ta	ig ID: 5198-6
Project ID:					-	er: Jamie Berna	rd-Drakey
_	-	rilling Supply Inc	PA s	ampling			
City:	,	,			Sta	te: Missouri	
Program:			VINC	CITEM	IDE	Cite ID: A7	V0 Cite OII 00
Site Name:	KUTAKT	DRILLING SUPPL	.T INC -	STIEW	IDE	Site ID: A/	X9 Site OU: 00
Location Desc:	Soil sar	nple					
ř	4		Externa	al Sam	ple Number:	RDS-S	B-6
Expected Conc		(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude:			Samp	ole Col	ection: Star	t: 2/14/11	13.20
Longitude:					Ene	d://_	_:
Laboratory Ar	nalyses:						
Container	Pre	servative	Holding	Time	Analysis		
1 - 8 oz glass		eg C	28	Days		Soil or Sediment	*
1 - 8 oz glass		eg C	180	Days		olids by ICP-AES	~
1 - 8 oz glass		eg C	180	Days	1 TCLP Metal:		
1 - 8 oz glass		eg C	14	Days	1 PAH's in So		×
1 - 8 oz glass	Non	е	28	Days	· 1 TCLP Mercu	ry in Soil	
Sample Comm	ents:		,.				
(N/A)			38	. 20	701 N 95 W	*	
*			-90	.391	95 W		

ASR Number:	5198 Sample Numl	ber: 7	QC Cod	de: Matr	ix: Solid 7	Tag ID: 519	8-7
Project Desc:	JBDA7X900 Rotary Drilling Supply	Inc - PA s		ject Manager:	Jamie Bern	ard-Drakey	
City:	Crystal City	THE TAB	·		Missouri		
Program: Site Name:	ROTARY DRILLING SU	JPPLÝ INC -	SITEWI	DE	Site ID: A	7X9 Site O	U: 00
Location Desc:	Soil sample						
		Externa	l Samp	le Number: _	RDS-	SF-1	
Expected Conc	(or Circle C	One: Low I	1edium	High)	Date	Time	(24 hr)
Latitude:		Samp	le Coll	ection: Start:	21411	13:3	9
Longitude:			*	End:			_
Laboratory An	-		*				
Container	Preservative	Holding		Analysis			
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soi		5	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid			*
1 - 8 oz glass	4 Deg C	180	Days	1 TCLP Metals in			
1 - 8 oz glass	4 Deg C	14	Days	1 PAH's in Soil b			
1 - 8 oz glass	None	28	Days	1 TCLP Mercury	IN 5011	9	
Sample Comme							
(N/A)		38, 201 90, 3	09 Ce	N			
	_	90. 3	7188	W			

ASK Number:	5198 Sample Numb	er: 8 QC C	ode: Matrix: Solid	Tag ID: 5198-8
Project ID:			roject Manager: Jamie Be	rnard-Drakey
	Rotary Drilling Supply Crystal City Superfund	Inc PA samplir	State: Missouri	
_	ROTARY DRILLING SU	PPLY INC - SITEW	/IDE Site ID:	A7X9 Site OU: 00
Location Desc:	Soil sample			
.*		External San	nple Number:RDS-	-SF-2
Expected Conc	(or Circle O	ne: Low Mediur	m High) Date	Time(24 hr)
Latitude:		Sample Co	llection: Start: 2/14/_	11 13:50
Longitude:			End://_	
Laboratory An	alyses:			
Container	Preservative	Holding Time	Analysis	
1 - 8 oz glass	4 Deg C	28 Days	1 Mercury in Soil or Sedimen	t
1 - 8 oz glass	4 Deg C	180 Days	1 Metals in Solids by ICP-AES	5
1 - 8 oz glass	4 Deg C	180 Days	1 TCLP Metals in Soil	
1 - 8 oz glass	4 Deg C	14 Days	1 PAH's in Soil by GC/MS	*
1 - 8 oz glass	None	28 Days	1 TCLP Mercury in Soil	¥
Sample Comme	ents:	200	-1-/ 1	*
(N/A) .	o :	38.2	DLOG N	at t
~		- 9n 2	19151 W	

ASR Number:	Sample N	umber: 9	QC Coc	ie: Matr	ix: Solid T	ag ID: 5198-9
Project ID:	JBDA7X900 Rotary Drilling Su	anly Inc DA s		ject Manager:	Jamie Berna	rd-Drakey
	Crystal City	opiy Inc PA's	amhima		Missouri	
	ROTARY DRILLING	SUPPLY INC -	SITEWI	DE	Site ID: A	7X9 Site OU: 00
Location Desc:	Soil sample					
		Extern	al Samp	le Number: _	RDS-S	F-3
Expected Conc	(or Circ	le One: Low	Medium	High)	Date	Time(24 hr)
Latitude:		Sam	ple Colle	ection: Start:	214/11	14:00
Longitude:				End:	_/_/_	_:_
Laboratory An						*
Container	Preservative		g Time	Analysis		*
1 - 8 oz glass	4 Deg C	÷	Days	1 Mercury in Soil		
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid		
1 - 8 oz glass	4 Deg C	180	Days	1 TCLP Metals in		
1 - 8 oz glass	4 Deg C	14	Days	1 PAH's in Soil b		
1 - 8 oz glass	None	28	Days	1 TCLP Mercury i	n Soil	
Sample Commo	ents:		- 0			
(N/A)	e.	38,2	o658	N		
*		38.2 -90.3	927.	3 W		*

ASR Number:	5198 Sample Numbe	r: 10 QC	Code:	Matrix: Solid	Tag ID: 5198-10
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply I	nc PA samp	_	nager: Jamie Ber	nard-Drakey .
•	Crystal City		ve	State: Missouri	
Program:					3
Site Name:	ROTARY DRILLING SUP	PLY INC - SIT	EWIDE	Site ID:	A7X9 Site OU: 00
		A 1849-41			
Location Desc:	Sediment sample	* *		40	2
		External S	ample Num	per: RDS-	SD-1-4E
Expected Conc	(or Circle One	e: Low Med	ium High)	Date	Time(24 hr)
Latitude:		Sample	Collection: 9	Start (45) 15]	1 12:55
Longitude:				End://_	;
Laboratory An	alyses:			:	
Container	Preservative	Holding Tim	ne Analys	is	
1 - 8 oz glass	4 Deg C	28 Da	ys 1 Mercu	y in Soil or Sediment	i
1 - 8 oz glass	4 Deg C	180 Da	ys 1 Metals	in Solids by ICP-AES	
Sample Comme	ents:			i i	
(N/A)	38.	20051 1			
(11/1)	-90.	2051 N	N		

ASR Number:	5198 Sample Num	ber: 10	QC Cod	e: D Matr	ix: Solid	Tag ID: 5198-10-
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply	/ Inc PA		ect Manager:	Jamie Ber	nard-Drakey .
City:	Crystal City			State:	Missouri	
Program: Site Name:	ROTARY DRILLING SU	JPPLY INC -	SITEWID	DE .	Site ID:	A7X9 Site OU: 00
Location Desc:	Sediment sample					2ue
		Extern	al Sampl	e Number: _	RDS-S	D-K-FD
Expected Conc	(or Circle (One: Low	Medium	High)	Date	Time(24 hr)
Latitude:		Sam	ple Colle	ction: Start:	2115/1	12:55
Longitude:				End:	_/_/_	:_
Laboratory An	alyses:	*			:	
Container	Preservative		g Time	Analysis		
1 - 8 oz glass	4 Deg C	28		1 Mercury in Soi		
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	s by ICP-AES	
Sample Commo				•		
(N/A)		38,2	5551	V		
		38,21 -90.3	9093	ω		*

ASR Number:	5198 Sample Number	: 11	QC Cod	e: Matri	ix: Solid 1	ag ID: 5198-11
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply In	c PA s	_	ject Manager:	Jamie Berna	ard-Drakey
	Crystal City		, ,	State:	Missouri	
Program:	Superfund					
Site Name:	ROTARY DRILLING SUPP	LY INC -	SITEWI	DE	Site ID: A	7X9 Site OU: 00
Location Desc:	Sediment sample	2				4
	*	Extern	al Samp	le Number: _	RDS-S	D-2-4e
Expected Conc	(or Circle One	: Low	Medium	High)	Date	Time(24 hr)
Latitude:		Sam	ple Colle	ction: Start:	2/15/11	13:30
Longitude:	·			End:	_/_/_	_:
Laboratory An	alyses:					
Container	Preservative	Holding	g Time	Analysis		
1 - 8 oz glass	4 Deg C	28	Days	1 Mercury in Soil	or Sediment	
1 - 8 oz glass	4 Deg C	180	Days	1 Metals in Solid	s by ICP-AES	,
Sample Comme	ents:			- 1		
(N/A)		38.	205	15 N 08 W		
		- QA	2917	18 W		

ASR Number:	5198 Sample Numb	er: 12 QC C	ode: Matr	ix: Solid Tag	ID: 5198-12
Project ID:	JBDA7X900 Rotary Drilling Supply		roject Manager:	Jamie Bernard	-Drakey
_	Crystal City	inc. Tri Sumpin	-	Missouri	
Program:	Superfund			*	
Site Name:	ROTARY DRILLING SU	PPLY INC - SITEV	WIDE	Site ID: A7X9	Site OU: 00
Location Desc:	Sediment sample				(e
		External San	nple Number:	RDS-SD	-3º4E
Expected Conc	(or Circle O			Date	Time(24 hr)
Latitude:		Sample Co	ollection: Start:	21511	1 <u>3:5</u> 0
Longitude:		x 2	End:	_/_/_	;
Laboratory An	alyses:	9:		2	
Container	Preservative .	Holding Time	Analysis		
1 - 8 oz glass	4 Deg C	28 Days	1 Mercury in Soi	l or Sediment	
1 - 8 oz glass	4 Deg C	180 Days	1 Metals in Solid	ls by ICP-AES	
Sample Commo	ents:				
(N/A)		38. 20°. -90. 391°	550 N		
	°5.	-90.391	91 W		

ASR Number:	5198 Sample Number:	13 QC Cod	e: Matr	ix: Solid Tag	ID: 5198-13
-	JBDA7X900 Rotary Drilling Supply Inc Crystal City		_	Jamie Bernard- Missouri	Drakey
Program:			. State:	111330411	
_	ROTARY DRILLING SUPPLY	Y INC - SITEWIE	DE .	Site ID: A7X9	Site OU: 00
Location Desc:	Sediment sample			3	7
	1	xternal Samp	le Number: _	RDS-SD	-Lf CAE
Expected Conc	(or Circle One:	Low Medium	High)	Date	Time(24 hr)
Latitude:	-	Sample Colle	ction: Start:	2/15/11	14:20
Longitude:			End:	·	_:_
Laboratory An					F 2
Container	Preservative	Holding Time	Analysis	- C- di	
1 - 8 oz glass 1 - 8 oz glass	4 Deg C 4 Deg C	28 Days 180 Days	1 Mercury in Soil 1 Metals in Solid		
		160 Days	1 Metals III Solid	s by ICF-AE3	
Sample Comme	ents:	*	3		gi gi
(N/A)	*	38.20 -90.39	537 N		
		-90.39	525 W		

ASR Number:	5198 Sample Number:	14 QC Co	de: Matr	ix: Solid	Tag ID: 5198-14
Project ID:	JBDA7X900 Rotary Drilling Supply Inc		oject Manager:	Jamie Berr	nard-Drakey
City:	Crystal City	· · · · · · · · · · · · · · · · · · · ·		Missouri	*
Program: Site Name:	ROTARY DRILLING SUPPL	Y INC - SITEW	IDE .	Site ID:	A7X9 Site OU: 00
Location Desc:	Sediment sample				8
		External Sam	ple Number:	PDS-S	5D-58-C4 & Time(24 hr)
Expected Conc :	(or Circle One:	Low Medium	High)	Date	Time(24 hr)
Latitude:		Sample Col	lection: Start:	2/15/11	14:30
Longitude:		,	End:	_/_/_	_:_
Laboratory An	alyses:	U-14! Ti	A 1		9
Container 1 - 8 oz glass	4 Deg C	Holding Time 28 Days	Analysis 1 Mercury in Soi	l or Sediment	
1 - 8 oz glass	4 Deg C	180 Days	1 Metals in Solid		
Sample Comme	ents:	00 -	-622 NI		
(N/A)		38,2	0523 N 9478 W		
		- 9n 2	9478 W		

ASR Number:	5198 Sample Number:	15	QC Cod	le:	Matr	ix: Solid	Tag I	D: 5198-15
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply Inc	: PA s		_	nager:	Jamie Berr	nard-D	Orakey
	Crystal City		, ,		State:	Missouri		
Program:	Superfund							
Site Name:	ROTARY DRILLING SUPPL	Y INC -	SITEWI	DE .		Site ID:	47X9	Site OU: 00
Location Desc:	Sediment sample							VI
		Externa	al Samp	le Numb	ber: _	RDS-	SD	-9
Expected Conc	(or Circle One:	Low	Medium	High)		Date		Time(24 hr)
Latitude:	 ,	Sam	ple Colle	ection: S		2/15/11		<u>14:45</u>
Longitude:					End:	_/_/_	*	_:_
Laboratory An			•					
Container	Preservative		g Time	Analys				· ·
1 - 8 oz glass	4 Deg C	28				or Sediment		
1 - 8 oz glass	4 Deg C	180	Days	1 Metals	in Solid	s by ICP-AES		,
Sample Commo			,					· · · · · · · · · · · · · · · · · · ·
(N/A)	3	38.6	20481	N				
× .		1 - 3	aila	8 10			*	

ASR Number:	5198 Sample Num	ber: 16 (QC Code:	Matr	ix: Solid 1	ag ID: 5198-16
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply	/ Inc PA sa		anager:	Jamie Berna	ard-Drakey
City:	Crystal City		,	State:	Missouri	*
	ROTARY DRILLING SL	JPPLY INC - S	SITEWIDE		Site ID: A	7X9 Site OU: 00
Location Desc:	Sediment sample		1			
		External	Sample Nu	mber: _	RDS-	50-1
Expected Conc	(or Circle 0	one: Low M	edium High)		Date	Time(24 hr)
Latitude:		Sampl	e Collection	: Start:	2/15/11	4:18
Longitude:				End:		_:_
Laboratory An	alyses:					,
Container	Preservative	Holding '	Time Anal	ysis		
1 - 8 oz glass	4 Deg C	28	Days 1 Mer	cury in Soil	or Sediment	
1 - 8 oz glass	4 Deg C	180	Days 1 Met	als in Solid	by ICP-AES	
1 - 8 oz glass	4 Deg C	14	Days 1 PAH	's in Soil b	GC/MS	
Sample Comme	ents:					
(N/A)	•	38. 2	10676 1066 W	N		
	ļ.	-90.39	loble W			

ASK Number:	5198 Sample Numb	er: 1/ QCC	ode: Mati	ix: Solia lag	J ID: 5198-1/
Project ID:	JBDA7X900 Rotary Drilling Supply		roject Manager	Jamie Bernard	d-Drakey
_	Crystal City	Inc PA Sampin		Missouri	
Program:				l#	
Site Name:	ROTARY DRILLING SU	PPLY INC - SITEV	VIDE	Site ID: A7X	9 Site OU: 00
Location Desc:	Sediment sample			1.	
	*	External San	nple Number:	RDS-	SD-3
Expected Conc	(or Circle O	ne: Low Mediu	m High)	Date	Time(24 hr)
Latitude:		Sample Co	llection: Start:	2/15/11	13:10
Longitude:			End:	!	_:_ •
Laboratory An	alyses:	E		ÿ	
Container	Preservative	Holding Time	Analysis	2	
1 - 8 oz glass	4 Deg C	28 Days	1 Mercury in Soi	l or Sediment	
1 - 8 oz glass	4 Deg C	180 Days	1 Metals in Solid	s by ICP-AES	380
1 - 8 oz glass	4 Deg C	14 Days	1 PAH's in Soil b	y GC/MS	*
Sample Comme	ents:		1		
(N/A)		38. 2059 - 95. 3911	16 N		
	- ,	- 95 3911	Le W		

ASR Number:	5198 Sample Number	: 18	QC Co	de: Ma	trix: Solid Ta	g ID: 5198-18
_	JBDA7X900 Rotary Drilling Supply Inc	c PA s			er: Jamie Bernar	d-Drakey
	Crystal City				e: Missouri	
Program:	Superfund		*		5	
Site Name:	ROTARY DRILLING SUPPL	Y INC -	SITEWI	DE	Site ID: A7>	(9 Site OU: 00
Location Desc:	Sediment sample					
		Extern	al Samp	ole Number:	RDS-SI	0-5
Expected Conc :					Date	Time(24 hr)
Latitude:		Sam	ple Coll	ection: Star	: 2/5/11	1 <u>3:4</u> 0
Longitude:				End	l: _/_/_	_:
Laboratory An	alyses:					
Container	Preservative		g Time	Analysis	38	
1 - 8 oz glass	4 Deg C	28	Days	, ,	Soil or Sediment	
1 - 8 oz glass	4 Deg C	180	Days		olids by ICP-AES	*
1 - 8 oz glass	4 Deg C	14	Days	1 PAH's in Soi	I by GC/MS	¥
Sample Comme	ents:					
(N/A)		3	8,20	127		
		-91	0, 39	127	*	

ASR Number:	5198 Sample Number:	30	QC Co	de: PE	Matri	x: Solid	Tag I	D: 5198-30-PE
Project ID:	JBDA7X900 Rotary Drilling Supply Inc.	- DΔ c		_	nager:	Jamie Berr	nard-D	rakey
City:	Crystal City	. 173	ampinig		State:	Missouri		
_	Superfund ROTARY DRILLING SUPPLY	Y INC -	SITEWI	DE		Site ID: /	47X9	Site OU: 00
Location Desc:	CLP QATS PE SAMPLE: M	IETALS	& MERC	CURY			3.5	u.
	E	externa	al Samp	le Numi	ber: _	, and the state of	1	
Expected Conc	: Low (or Circle One:	Low	Medium	High)		Date		Time(24 hr)
Latitude:		Samı	ple Coll	ection: 9	Start:	01/25/20	11	10:00
Longitude:	· · · · · · · · · · · · · · · · · · ·				End:			:
Laboratory Ar	-			8				
Container	Preservative	Holding		Analys			1	
1 - 8 oz glass	4 Deg C	28	Days		•	or Sediment		
1 - 8 oz glass	4 Deg C	180	Days	1 Metals	in Solid	s by ICP-AES		

Sample Comments:

QATS ID # MS02470

SAMPLE AND INSTRUCTION SHEETS LEFT IN BACK DOCK REFRIGERATOR TO BE INCLUDED WITH THE FIELD SAMPLES. 12/28/10 RKE

ASR Number:	5198	Sample Number	er: 1	.01	QC Co	de: N	1atr	ix: Water	Tag I	D: 5198-101-	
Project ID: Project Desc:			Inc	PA sa		ject Mana	ger:	Jamie Ber	nard-[Drakey	
City:	Crystal	City	٠				ate:	Missouri			
Program: Site Name:		nd ' DRILLING SUP	PLY	INC -	SITEWI	DE		Site ID:	A7X9	Site OU: 00	
Location Desc:	Surface	e water sample	3								
*			Ex	terna	Samp	ole Numbe	r: _	RDS	- SU)-/	-
Expected Conc	:	(or Circle Or	ie:	Low I	Medium	High)		Date		Time(24 hr)
Latitude:				Samp	le Coll	ection: Sta	art:	2/15/11	-	11:18	
Longitude:				*		E	nd:	_/_/_	-	_:_	
Laboratory An											_
Container 1 - 1 Liter Cubitainer 1 - 1 Liter Cubitainer 1 - 128oz amber gla	r 5 n r HN	O3 to pH<2	<2	28	Days	1 Metals in	Wate	ter er by ICP/MS r by GC/MS-Si		,	
Sample Commo	ents:						-				
(N/A)				38.	20	676 N					
				-90	. 39	oule u)				

And collected MS/MSD

ASR Number: 5	198 Sample Number:	102	QC Co	de: Matr	ix: Water Tag	ID: 5198-102
Project ID:	IBDA7X900 Rotary Drilling Supply Inc	PA sa		-	Jamie Bernard-	Drakey
City:	Crystal City			-	Missouri	
	Superfund ROTARY DRILLING SUPPL	Y INC -	SITEW	IDE	Site ID: A7X9	Site OU: 00
Location Desc:	Surface water sample			×.		
	1	Externa	l Sam	ple Number: _	RDS-SI	N-3
Expected Conc:	(or Circle One:	Low 1	Medium	n High)	Date	Time(24 hr)
Latitude:	management when the state of th	Samp	le Col	lection: Start:	2/15/11	13:10
Longitude:				End:		
Laboratory Ana	-				•	
Container	Preservative	Holding	9	Analysis		
1 - 1 Liter Cubitainer	5 mL of HNO3/L to pH<2		Days	1 Mercury in Wa		
1 - 1 Liter Cubitainer	HNO3 to pH<2	180	Days	1 Metals in Wate		
1 - 128oz amber glass	4 Deg C	7	Days	1 PAH's in Water	by GC/MS-SIM	e .
Sample Comme	nts:					
(N/A)			38	,20546 .391/6	N	
		-	90	.391/6	W	

ASR Number: 5	198 Sample Number:	103 QC Co	le: Matr	ix: Water	Гад ID: 5198-103- <u></u>
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply Inc	The second secon	ject Manager:	Jamie Bern	ard-Drakey
	Crystal City			Missouri	
Program:	Superfund				
Site Name:	ROTARY DRILLING SUPPLY	Y INC - SITEWI	DE .	Site ID: A	7X9 Site OU: 00
Location Desc:	Surface water sample				
		External Samp	le Number:	RDS-	SW-5
Expected Conc:	(or Circle One:	Low Medium	High)	Date	Time(24 hr)
Latitude:		Sample Coll	ection: Start:	2/15/11	13:40
Longitude:			End:	_/_/_	_:_
Laboratory Ana	alyses:		, ,	***************************************	
Container	Preservative	Holding Time	Analysis .		
1 - 1 Liter Cubitainer	5 mL of HNO3/L to pH<2	28 Days	1 Mercury in Wa	ter	
1 - 1 Liter Cubitainer	HNO3 to pH<2	180 Days	1 Metals in Wate		*
1 - 128oz amber glas	s 4 Deg C	7 Days	1 PAH's in Water	by GC/MS-SIN	1
Sample Comme	nts:		r)		
(N/A)		38,200	The IN		
		38.205	27 W		

ASK Number:	Sample Number:	104 QC Code:	Matrix: Water Ta	ig ID: 5198-104
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply Inc		anager: Jamie Bernar	d-Drakey
-	Crystal City	,	State: Missouri	
Program:		V 1116 - CTTTUTE		
Site Name:	ROTARY DRILLING SUPPL	Y INC - SITEWIDE	Site ID: A/	X9 Site OU: 00
Location Desc:	Surface water sample			
		External Sample Nun	nber: RDS-S	W-2
Expected Conc	(or Circle One:	Low Medium High)	Date	Time(24 hr)
Latitude:		Sample Collection:	Start: 2/15/11	12.55
Longitude:			End://	_:_
Laboratory An	alyses:			
Container	Preservative	Holding Time Analy	/sis	*
1 - 1 Liter Cubitainer		·	cury in Water	
1 - 1 Liter Cubitainer	HNO3 to pH<2	180 Days 1 Meta	als in Water by ICP/MS	
Sample Comme	ents:		-1 .	•
(N/A)	•	38.205)/ N	
		38.2055 - 90. 390	93 W	

ASR Number:	5198 S a	mple Number:	104	QC Cod	le: 🖺 Matr	ix: Water	Tag I	D: 5198-104-
Mary Mary Company of the Company	JBDA7X9	00 illing Supply Inc.	- DA 6	-	ject Manager:			
City:	Crystal Ci	ty	- FA 3	amping	State	Missouri		
Program: Site Name:		DRILLING SUPPLY	INC -	SITEWI	DE	Site ID:	A7X9	Site OU: 00
Location Desc:	Surface	water sample	1					
	120	E	xtern	al Samp	le Number:	RDS	i-Su	J-2-FD
Expected Conc	:	(or Circle One:	Low	Medium	High)	Date		Time(24 hr
Latitude:			Sam	ple Colle	ection: Start:	2/15/1	1	12:55
Longitude:					End:	_/_/_	_	_:_
Laboratory An	-			_ =:				
Container 1 - 1 Liter Cubitainer		ervative of HNO3/L to pH<2	Holain 28	g Time Days	Analysis 1 Mercury in Wa	iter		
1 - 1 Liter Cubitainer		3 to pH<2	. 180		1 Metals in Wate			*
Sample Comme	ents:	7						
(N/A)				3	8.2055/	N		
				- 00	29192	(.)	Α:	

ASR Number: 5	5198 Sample Number:	105 QC Co	de: Matr	ix: Water T	ag ID: 5198-105
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply Inc		ject Manager:	Jamie Berna	ard-Drakey
City:	Crystal City	,		Missouri	
Program: Site Name:	ROTARY DRILLING SUPPL	Y INC - SITEWI	DE	Site ID: A	7X9 Site OU: 00
Location Desc:	Surface water sample	,			
		External Samp	le Number:	RDS-	SW-4
Expected Conc :	(or Circle One:	Low Medium	High)	Date	Time(24 hr)
Latitude:		Sample Coll	ection: Start:	2/15/11	<u>13</u> :30
Longitude:			End:	_/_/_	_:_
Laboratory An	alyses:				
Container 1 - 1 Liter Cubitainer	Preservative 5 mL of HNO3/L to pH<2	Holding Time 28 Days	Analysis 1 Mercury in Wa	tor	,
1 - 1 Liter Cubitainer		180 Days	1 Metals in Wate		. 8
Sample Comme	ents:		1		
(N/A)		38,205	56 NL	C4 €	
		38. 205 -90 : 39	75 N	*	
		-90,39	108 W	8	

ASR Number:	5198 Sample Number:	106 QC Code: Matr	ix: Water Tag ID: 5198-106
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply Inc.		Jamie Bernard-Drakey
City:	Crystal City		Missouri
Program: Site Name:	Superfund ROTARY DRILLING SUPPLY	INC - SITEWIDE	Site ID: A7X9 Site OU: 00
	NOTALL DISCLESSION OF THE	INC STIEWIDE	Site 15: A/A/3 Site GO: 00
Location Desc:	Surface water sample		
	Ex	xternal Sample Number: _	RDS-SW-Le
Expected Conc	(or Circle One:	Low Medium High)	Date Time(24 hr)
Latitude:		Sample Collection: Start:	2/15/11 13:50
Longitude:		End:	_/_/:_
Laboratory An	alyses:	,	
Container		Holding Time Analysis	
1 - 1 Liter Cubitainer	5 mL of HNO3/L to pH<2	28 Days 1 Mercury in Wat	rer
1 - 1 Liter Cubitainer	HNO3 to pH<2	180 Days 1 Metals in Wate	r by ICP/MS
Sample Comme	ents:	66- 11	~
(N/A)		38.20550 N	
	* *	-02 39191 W	

ASR Number: 51	98 Sample Number:	107 QC Co	de: Matr	ix: Water Tag	ID: 5198-107
Project ID: J	BDA7X900 otary Drilling Supply Inc		oject Manager:	Jamie Bernard	-Drakey
City: C	rystal City	rA sampling		Missouri	*
Program: S Site Name: R	OTARY DRILLING SUPPL	Y INC - SITEWI	DE .	Site ID: A7X	Site OU: 00
Location Desc:	Surface water sample				
*	. 1	External Samp	ole Number: _	RDS-S	W-7
Expected Conc:	(or Circle One:	Low Medium	High)	Date	Time(24 hr)
Latitude:		Sample Coll	ection: Start:	2/15/11	14:20
Longitude:			End:		_:_
Laboratory Ana	•				
Container 1 - 1 Liter Cubitainer		Holding Time 28 Days	Analysis 1 Mercury in Wa	ter	*
		180 Days	1 Metals in Wate		*
Sample Commen	ts:				
(N/A)		38,2053	37 N		
	_	0- 205	25 W		

Background Sample.

ASR Number:	5198 Sample Number:	108 QC Code: Matri	x: Water Tag 1	D: 5198-108
Project ID:		Project Manager:	Jamie Bernard-I	Drakey
City:	Rotary Drilling Supply Inc. Crystal City	55.77 1990	Missouri	
Program: Site Name:	Superfund ROTARY DRILLING SUPPLY	/ INC - SITEWIDE	Site ID: A7X9	Site OU: 00
Location Desc:	Surface water sample			
	E	xternal Sample Number: _	RDS-SW.	-8
Expected Conc	(or Circle One:	Low Medium High)	Date	Time(24 hr)
Latitude:		Sample Collection: Start:	2/15/11	1 <u>4: 3</u> 0
Longitude:		End:	_/_/_	_:_
Laboratory An	-			
Container 1 - 1 Liter Cubitainer		Holding Time Analysis 28 Days 1 Mercury in Wate		
1 - 1 Liter Cubitainer		180 Days 1 Metals in Water		
Sample Comme	ents:			
(N/A)	*	38. 20523 N		
		0 29478 4		

Background Sample.

ASR Number:	5198 Sample Number:	109 QC Cod	e: Matri	x: Water Tag	ID: 5198-109
Project ID: Project Desc:	JBDA7X900 Rotary Drilling Supply Inc	-	ect Manager:	Jamie Bernard	-Drakey
	Crystal City	,p5	State:	Missouri	
Program:	•		*	9	
Site Name:	ROTARY DRILLING SUPPLY	Y INC - SITEWID	DE .	Site ID: A7X9	Site OU: 00
Location Desc:	Surface water sample	, , , , , , , , , , , , , , , , , , ,			
	E	xternal Sampl	le Number: _	ROS-SU	U-9
Expected Conc	(or Circle One:	Low Medium	High)	Date	Time(24 hr)
Latitude:		Sample Colle	ction: Start:	2/19/11	1 <u>4:4</u> 5
Longitude:			End:	_/_/_	<u></u>
Laboratory An					^ •
Container 1 - 1 Liter Cubitainer	Preservative 5 mL of HNO3/L to pH<2	Holding Time	Analysis 1 Mercury in Wat	er.	
1 - 1 Liter Cubitainer		180 Days	1 Metals in Wate		
Sample Commo	ents:		*		
(N/A)	3	8. 20481	N		
		- 911-0		*	

Background Sample.

ASK Number:	5198	Sample Number:	111	QC Co	de: Mati	ix: Water Ta	ag ID: 5198-111
Project ID:			DA		ject Manager	: Jamie Berna	rd-Drakey
City:	Crysta		PA :	sampling		Missouri	
Program: Site Name:		fund RY DRILLING SUPPL'	Y INC -	SITEWI	DE	Site ID: A7	X9 Site OU: 00
Location Desc:	Rinsa	te sample					
		ı	Extern	al Samp	ole Number:	RDS-	- RB
Expected Conc	:	(or Circle One:	Low	Medium	High)	Date	Time(24 hr)
Latitude:	×		Sam	ple Coll	ection: Start:	2,14,11	13:18
Longitude:					End:	_/_/_	-:-
Laboratory An							
Container 1 - 1 Liter Cubitainer	-	reservative mL of HNO3/L to pH<2		g Time Days	Analysis 1 Mercury in Wa	iter	**
1 - 1 Liter Cubitainer		INO3 to pH<2	180	Days	1 Metals in Wate	er by ICP/MS	
Sample Comme	ents:	10 3					
(N/A)		Vucaba Sa	4-010				

				e: FB Mati	ix: Water Tag	. J130 112 1L
Project ID:		Ď.		ject Manager	Jamie Bernard-	Drakey
-	Rotary Drilling Supply Inc	PA sa	mpling	Chahai	Missouri	
Program:	Crystal City			State	Missouri	•
_	ROTARY DRILLING SUPPLY	Y INC - S	SITEWI	DE	Site ID: A7X9	Site OU: 00
Location Desc:	Field Blank sample		*5			
		External	Samp	le Number:	RDS-F	B
Expected Conc	(or Circle One:	Low M	edium	High)	Date	Time(24 hr)
Latitude:		Samp	e Colle	ection: Start:	2/15/11	15:00
Longitude:				End:		:
Laboratory An	alyses:		**************		A	
10	Preservative	Holding	Time	Analysis		v.
Container	110001100110			1917 ASSOCIATE 100 FEBRUARY		
Container 1 - 1 Liter Cubitainer		28	Days	1 Mercury in Wa	ter	

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

ACTIVITY LEADER (F	Jamie Bernard Drakey Rotary Drilling Survey Sile									DATE-OF-COLLECTION SHEET DAY MONTH YEAR \ of \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
CONTENTS OF SHIP		-		1	17-11-7)(1					DAT WONTH TEAM 1
SAMPLE NUMBER	CUBITAINER NUME			BOTTLE E NUMBER	VOA SET (2 VIALS EA)	water		neut	MEDI	other	RECEIVING LABORATORY REMARKS/OTHER INFORMATION (condition of samples upon receipt, other sample numbers, etc.)
5193-1	X					П	χ				
1 -2									\sqcap		
- 3						П			T		
-4											
-5					1						
-6											
-7			•								
-8							Ш				
-9							Ш				. ,
-10							Щ				
-10-50							Щ		1		1 h 4 3
-11							4	4	\perp	_	
-12						\perp	Щ		_		
-13						4	$\!$	4	+		
14						\dashv	H	\dashv	+		
- 15						\dashv	H	4	+	_	
1 - 16				-		\dashv	H	+	+	_	
10		*				\dashv	\bigvee	+	+	-	
V - 13	V					\dashv	4	+	+		
						-	7	7	7	-	
			-11-11	ina	2-11	0-1	+	+	+	1	
		Awa	~ (1	+	+	+		
	9	/ &				\forall	T	\forall	\top	\exists	,
DESCRIPTION OF SH	IIPMENT			M	ODE OF SHIP	ME	NT				×
PIECE(S) CO	INSISTING OF	В	DX(ES)		COMMER	RCIA	L CA	RRI	ER:	79	67 6914 5440
2	S): OTHER			-	COURIER		NIVE	VEF	,		(OURDDING DOOLSESTED NUMBER)
PERSONNEL CUSTO	NV DECORO		- Comment		SAIVIT LEI	1 00) I V L	ILL	,		(SHIPPING DOCUMENT NUMBER)
RELINQUISHED BY	(SAMPLER)	DATE	TIME	RECEI	VED BY						REASON FOR CHANGE OF CUSTODY
Syma (hy le	2.16-11	1130								i saaki
SEALED RELINQUISHED BY	UNSEALE	DATE	TIME		VED BY		JNS	EAI	LED	А	REASON FOR CHANGE OF CUSTODY
	ŕ			ľ.							
SEALED RELINQUISHED BY	UNSEALE	DATE	TIME	SEA	VED BY		UNS	EA	LED	4	REASON FOR CHANGE OF CUSTODY
				,							4
SEALED	UNSEALE			SEA	LED		UNS	EA	LED	П	·

CHAIN OF CUSTODY RECORD ENVIRONMENTAL PROTECTION AGENCY REGION VII

ACTIVITY LEADER (F	ACTIVITY LEADER (Print) James Bernard Drakey				NAME OF SURVEY OR ACTIVITY Kutary Dulling Supply Sill				DATE OF COLLECTION SHEET DAY MONTH YEAR 1 of 2			
CONTENTS OF SHIP	10-4			1	1). (1)	1	7.1	01			-1	DAY MUNITH TEAR
, SAMPLE NUMBER	CUBITAINER	BOTTLE	OF CONTAIN BOTTLE	Ι	TLE	VOA SET (2 VIALS EA)		SAME	Sediment		other	RECEIVING LABORATORY REMARKS/OTHER INFORMATION (condition of samples upon receipt,
GIAD III	-	BERS OF CONT	AINERS PER S	AMPLE N	NUMBER		water	Soil	Sed	dust	A ^T	other sample numbers, etc)
5198-101	X			-			X		<u> </u>	6		
102				-			H	-	AL DEST	Н		Noed SIM detection
-14				\vdash			H	\vdash				limit on all
-104-FD				t			\dagger			H		There is an artist of the second of the seco
-105							H					Water Samples
-106							Ħ					7/70/100 37-10/7/21
-107							IT					
-(03)												
-109												
-111		18										agen of the first of
-112-FB	V						1					
										•		
										1		
								11				
						2.1	0	Ĺ				
				HA			Ц	Ш		\perp		
				119						4		
			4	<u></u>			Ш			4		
		NACY Y			\dashv			\mathbb{H}	_	4		
		JW T			\dashv		Ц	Н	4	4		
	1						Н	Н	\dashv	\dashv	_	
					1 110	DE 05 0111						
DESCRIPTION OF SH	IIPMENT				MU	DE OF SHI					70	12 1,014 SC/S & 7917 (0414)
2	ONSISTING OF		BOX(ES)			— COMME		AL C	ARR	IER:	FI	67 6914 5565 8 1967 6914 5473
3 ICE CHEST	S): OTHER					SAMPLE		VNO	EYE	D		(SHIPPING DOCUMENT NUMBER)
PERSONNEL CUSTO	DY RECORD											
RELINQUISHED BY	(SAMPLER)	DATE			RECEIV	ED BY						REASON FOR CHANGE OF CUSTODY
SEALED	2-16-11 1130					.ED		UNS	SEA	LEC	ם ר	12.2
RELINQUISHED BY DATE TIME					RECEIV	THE RESERVE THE PERSON NAMED IN						REASON FOR CHANGE OF CUSTODY
,												*
SEALED RELINQUISHED BY	UNSEALE	DATE	TIME	-f	RECEIV			UN	st.A	LE	ο I	REASON FOR CHANGE OF CUSTODY
, * * ;								SEALED UNSEALED				
SEALED 7-EPA-9262(Revised 5/	UNSEALE	D			SEAL	ED		UN	SEA	ALE	D	

APPENDIX F
ANALYTICAL RESULTS

United States Environmental Protection Agency Region 7 901 N. 5th Street Kansas City, KS 66101

Date:

Subject: Transmittal of Sample Analysis Results for ASR #: 5198

Project ID: JBDA7X900

Project Description: Rotary Drilling Supply Inc. - PA sampling

From: Michael F. Davis, Chief

Chemical Analysis and Response Branch, Environmental Services Division

To: Jamie Bernard-Drakey

SUPR/ERSB

Enclosed are the analytical data for the above-referenced Analytical Services Request (ASR) and Project. The Regional Laboratory has reviewed and verified the results in accordance with procedures described in our Quality Manual (QM). In addition to all of the analytical results, this transmittal contains pertinent information that may have influenced the reported results and documents any deviations from the established requirements of the QM.

Please contact us within 14 days of receipt of this package if you determine there is a need for any changes. Please complete the enclosed Customer Satisfaction Survey and Data Disposition/Sample Release memo for this ASR as soon as possible. The process of disposing of the samples for this ASR will be initiated 30 days from the date of this transmittal unless an alternate release date is specified on the Data Disposition/Sample Release memo.

If you have any questions or concerns relating to this data package, contact our customer service line at 913-551-5295.

Enclosures

cc: Analytical Data File.

Summary of Project Information

ASR Number: 5198

Project Manager: Jamie Bernard-Drakey

Org: SUPR/ERSB

Phone: 913-551-7400

Project ID: JBDA7X900

Project Desc: Rotary Drilling Supply Inc. - PA sampling

Location: Crystal City

State: Missouri

Program: Superfund

Site Name: ROTARY DRILLING SUPPLY INC - SITEWIDE

Site ID: A7X9 Site OU: 00

Purpose: Site Preliminary Assessment

GPRA PRC: 302DD2C

Explanation of Codes, Units and Qualifiers used on this report

Sample QC Codes: QC Codes identify the type of sample for quality control purpose.

Units: Specific units in which results are

reported.

__ = Field Sample FB = Field Blank

FD = Field Duplicate

mg/L = Milligrams per Liter mg/kg = Milligrams per Kilogram

ug/L = Micrograms per Liter

ug/kg = Micrograms per Kilogram

Data Qualifiers: Specific codes used in conjunction with data values to provide additional information on the quality of reported results, or used to explain the absence of a specific value.

(Blank) = Values have been reviewed and found acceptable for use.

J = The identification of the analyte is acceptable; the reported value is an estimate.

U = The analyte was not detected at or above the reporting limit.

UJ = The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

Sample Information Summary

Project ID: JBDA7X900

ASR Number: 5198

Project Desc: Rotary Drilling Supply Inc. - PA sampling

Sample QC No Cod		Location Description	External Sample No	Start Date	Start Time	End Date	End Time	Receipt Date
1	Solid	RDS-SB-1		02/14/2011	09:37			02/17/2011
2	Solid	RDS-SB-2		02/14/2011	10:15			02/17/2011
3	Solid	RDS-SB-3		02/14/2011	11:05			02/17/2011
4	Solid	RDS-SB-4		02/14/2011	12:10			02/17/2011
5	Solid	RDS-SB-5		02/14/2011	12:45			02/17/2011
6	Solid	RDS-SB-6		02/14/2011	13:20			02/17/2011
7	Solid	RDS-SF-1		02/14/2011	13:39			02/17/2011
8	Solid	RDS-SF-2		02/14/2011	13:50			02/17/2011
9	Solid	RDS-SF-3		02/14/2011	14:00			02/17/2011
10	Solid	RDS-SD-2		02/15/2011	12:55			02/17/2011
10 - FD	Solid	RDS-SD-2FD/Field Duplicate of sample 10		02/15/2011	12:55			02/17/2011
11	Solid	RDS-SD-4		02/15/2011	13:30	181		02/17/2011
12	Solid	RDS-SD-6		02/15/2011	13:50			02/17/2011
13	Solid	RDS-SD-7		02/15/2011	14:20			02/17/2011
14	Solid	RDS-SD-8		02/15/2011	14:30			02/17/2011
15	Solid	RDS-SD-9		02/15/2011	14:45			02/17/2011
16	Solid	RDS-SD-1		02/15/2011	11:18			02/17/2011
17	Solid	RDS-SD-3		02/15/2011	13:10			02/17/2011
18	Solid	RDS-SD-5		02/15/2011	13:40			02/17/2011
101	Water	RDS-SW-1		02/15/2011	11:18			02/17/2011
102		RDS-SW-3		02/15/2011	13:10			02/17/2011
103	Water	RDS-SW-5		02/15/2011	13:40			02/17/2011
104	Water	RDS-SW-2		02/15/2011	12:55			02/17/2011
104 - FD		RDS-SW-2FD/Field Duplicate of sample 104		02/15/2011	12:55			02/17/2011
105	Water	RDS-SW-4		02/15/2011	13:30			02/17/2011
106	Water	RDS-SW-6		02/15/2011	13:50			02/17/2011
107		RDS-SW-7		02/15/2011	14:20			02/17/2011
108		RDS-SW-8		02/15/2011	14:30			02/17/2011
109	Water	RDS-SW-9		02/15/2011	14:45			02/17/2011
111	Water	Rinsate sample		02/15/2011	13:18			02/17/2011
112 - FB	Water	Field Blank sample		02/15/2011	15:00			02/17/2011

03/17/2011

Project ID: JBDA7X900

ASR Number: 5198

Project Desc Rotary Drilling Supply Inc. - PA sampling

Analysis Comments About Results For This Analysis

1 Mercury in Soil or Sediment

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Basis: Dry

 Samples:
 1-_____
 2-______
 3-______
 4-______
 5-______
 6-_______
 7-_____

 8-______
 9-_______
 10-_______
 10-FD
 11-_______
 12-________
 13-______

 14-_______
 15-________
 16-_________
 17-_________
 18-________

Comments:

Mercury was UJ-coded in samples -1, -3, -4, and -7 through -17 and mercury was J-coded in samples -2, -5, -6, and -18. Positive results were J-coded and non-detect results were UJ-coded due to low recovery of this analyte (Hg: 0.25 mg/Kg vs 0.27-1.1 mg/Kg) in the performance evaluation (PE) sample. The actual reporting limit for this analyte may be higher than the reported value.

1 Metals in Solids by ICP-AES

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Basis: Dry

 Samples:
 1-___
 2-___
 3-___
 4-___
 5-___
 6-___
 7-__

 8-___
 9-___
 10-___
 10-FD
 11-___
 12-___
 13-___

 14-__
 15-__
 16-___
 17-___
 18-___

Comments:

Slight boron contamination was found in the calibration blanks. Only samples containing this analyte at a level greater than ten times the contamination level of the blank are reported without being qualified. All samples that contained this analyte but at a level less than ten times the contamination in the blank have the result U-coded indicating that the reporting limit has been raised to the level found in the sample. Samples affected were: boron in -1.

Cadmium in samples -1, -3 through -5, -8, -9, and -13 through -15 was UJ-coded and cadmium in samples -2, -6, -7, -10, -11, -12, -17, and -18 was J-coded. Positive results within a factor of ten were J-coded and non-detect results were UJ-coded due to negative recoveries of this analyte in the interference check samples (ICS) which was not present in the ICS solution but whose absolute values were greater than the method detection limit (MDL), therefore, a possibility of false negatives exists. The actual reporting limits may be higher than the reported values.

Antimony was UJ-coded in sample -18. This analyte was not found in the sample at or above the reporting limit, however, the reporting limit is an estimate (UJ-coded) due to low recovery of this analyte (Sb: 32% vs 75-125%) in the laboratory matrix spike. The actual reporting limit for this analyte may be higher than the reported value.

Vanadium and zinc were J-coded in sample -18. Although the analytes in question have been positively identified in the sample, the quantitations are an estimate (J-coded) due to

ASR Number: 5198

RLAB Approved Analysis Comments

03/17/2011

Project ID: JBDA7X900

Project Desc Rotary Drilling Supply Inc. - PA sampling

Analysis Comments About Results For This Analysis

low recoveries of these analytes (V: 74% and Zn: 74% vs 75-125%) in the laboratory matrix spike. The actual concentrations for these analytes may be higher than the reported values.

Arsenic, barium, boron, chromium, copper, iron, magnesium, manganese, sodium, vanadium, and zinc in sample -18 were J-coded. Although the analytes in question have been positively identified in these samples, the quantitations are an estimate (J-coded) due to the serial dilution percent differences (As: 30.1%, Ba: 17%, B: 25%, Cr: 21%, Cu: 16%, Fe: 24%, Mg: 17%, Mn: 24%, Na: 16%, V: 26%, and Zn: 16%) being above the control limits (15%). The actual concentrations for these analytes may be higher than the reported values.

1	PAH's	in	Soil	bv	GC/MS
				- /	/

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Basis: Dry

 Samples:
 1-__
 2-__
 3-__
 4-__
 5-__
 6-__
 7-__

 8-__
 9-__
 16-__
 17-__
 18-__

Comments:

(N/A)

1 TCLP Mercury in Soil

Lab: Region 7 ESAT Contract Lab (In-House)

Method: EPA Region 7 RLAB Method 3121.23B applied to TCLP extracts

Basis: N/A

Samples: 1-__ 2-__ 3-__ 4-__ 5-__ 6-__ 7-__ 8-__ 9-__

Comments:

1 TCLP Metals in Soil

Lab: Region 7 ESAT Contract Lab (In-House)

Method: EPA Region 7 RLAB Method 3122.3D Applied to TCLP extracts

Basis: N/A

Samples: 1-__ 2-__ 3-__ 4-__ 5-__ 6-__ 7-__ 8- 9-

Comments:

1 Mercury in Water

Lab: Contract Lab Program (Out-Source)

ASR Number: 5198

RLAB Approved Analysis Comments

03/17/2011

Project ID: JBDA7X900

Project Desc Rotary Drilling Supply Inc. - PA sampling

Analysis Comments About Results For This Analysis

Method: CLP Statement of Work

Samples: 101-__ 102-__ 103-__ 104-__ 104-FD 105-__ 106-__

107-__ 108-__ 109-__ 111-__ 112-FB

Comments:

(N/A)

1 Metals in Water by ICP/MS

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 101-__ 102-__ 103-__ 104-__ 104-FD 105-__ 106-__

107-__ 108-__ 109-__ 111-__ 112-FB

Comments:

Slight arsenic, boron, cobalt, copper, lead, nickel, and zinc contamination were found in the calibration blanks. Only samples containing these analytes at a level greater than ten times the contamination level of the blank are reported without being qualified. All samples that contained these analytes but at a level less than ten times the contamination in the blank have the result U-coded indicating that the reporting limits have been raised to the levels found in the samples. Samples affected were: arsenic in -104, -104FD, and -111, boron in -107, -108, -109, and -111, cobalt in -101, copper in -101, -102, -104, -104FD, -107, -108, -109, and -111, lead in -102, -104, -104FD, -107, -108, and -111, nickel in -103, -106, -107, -108, -109, and -111, and zinc in -102 through -104FD, -106, -108, and -109.

Negative zinc contamination was found in the preparation blank. Only samples containing this analyte at a level greater than five times the contamination level of the blank are reported without being qualified. All samples that contained this analyte but at a level less than five times the contamination in the blank have the result J-coded. Samples affected were: zinc in -101 and -107.

1 PAH's in Water by GC/MS-SIM

Lab: Contract Lab Program (Out-Source)

Method: CLP Statement of Work

Samples: 101-__ 102-__ 103-__

Comments:

Samples -101, -103 and -103 were extracted 1 day past the 7 day extraction holding time. The results for all analytes (no analytes of interest were detected in these samples) were UJ-coded in samples -101, -102 and -103 to indicate that the reporting limit is an estimated value. The actual reporting limit may be higher than the reported value.

Project ID: JBDA7X900

Project Desc: Rotary Drilling Supply Inc. - PA sampling

Analysis/ Analyte	Units	1	2	3	4
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.10 UJ	0.21 J	0.11 UJ	0.16 UJ
1 Metals in Solids by ICP-AES					
Aluminum	mg/kg	1270	61300	56300	62000
Antimony	mg/kg	5.2 U	7.0 U	6.3 U	8.3 U
Arsenic	mg/kg	3.8	39.2	17.1	50.4
Barium	mg/kg	17.4 U	4270	3950	4300
Beryllium	mg/kg	0.43 U	3.6	3.0	4.0
Boron	mg/kg	12.3 U	538	406	590
Cadmium	mg/kg	0.43 UJ	0.67 J	0.53 UJ	0.69 UJ
Calcium	mg/kg	108000	123000	111000	118000
Chromium	mg/kg	3.0	51.2	33.7	59.1
Cobalt	mg/kg	4.3 U	18.8	13.5	19.3
Copper	mg/kg	4.9	137	105	142
Iron	mg/kg	2950	25300	22100	24200
Lead	mg/kg	38.7	45.2	19.4	56.3
Magnesium	mg/kg	55100	16200	14800	16600
Manganese	mg/kg	65.5	172	149	223
Nickel	mg/kg	5.7	48.3	33.5	50.7
Potassium	mg/kg	682	1780	1410	2080
Selenium	mg/kg	3.0 U	6.0	3.7 U	5.5
Silver	mg/kg	0.87 U	1.2 U	1.1 U	1.4 U
Sodium	mg/kg	434 U	4730	4980	4900
Thallium	mg/kg	2.2 U	2.9 U	2.6 U	3.4 U
Vanadium	mg/kg	4.6	161	129	167
Zinc	mg/kg	16.6	104	62.5	128
1 PAH's in Soil by GC/MS					
Acenaphthene	ug/kg	190 U	240 U	230 U	280 U
Acenaphthylene	ug/kg	190 U	240 U	230 U	280 U
Anthracene	ug/kg	190 U	240 U	230 U	280 U
Benzo(a)anthracene	ug/kg	190 U	240 U	230 U	280 U
Benzo(a)pyrene	ug/kg	190 U	240 U	230 U	280 U
Benzo(b)fluoranthene	ug/kg	190 U	240 U	230 U	280 U
Benzo(g,h,i)perylene	ug/kg	190 U	240 U	230 U	280 U
Benzo(k)fluoranthene	ug/kg	190 U	240 U	230 U	280 U
2-Chloronaphthalene	ug/kg	190 U	240 U	230 U	280 U
Chrysene	ug/kg	190 U	240 U	230 U	280 U
Dibenz(a,h)anthracene	ug/kg	190 U	240 U	230 U	280 U
Fluoranthene	ug/kg	190 U	240 U	230 U	280 U
Fluorene	ug/kg	190 U	240 U	230 U	280 U
Indeno(1,2,3-cd)pyrene	ug/kg	190 U	240 U	230 U	280 U
2-Methylnaphthalene	ug/kg	190 U	240 U	230 U	280 U
Naphthalene	ug/kg	190 U	240 U	230 U	280 U
Phenanthrene	ug/kg	190 U	240 U	230 U	280 U
Pyrene	ug/kg	190 U	240 U	230 U	280 U

ASR Number: 5198 RLAB Approved San

RLAB Approved Sample Analysis Results

03/17/2011

Project ID: JBDA7X900 Project Desc: Rotary Drilling Supply Inc. - PA sampling

Analysis/ Analyte	Units	1	2	3	4
1 TCLP Mercury in Soil Mercury	mg/L	0.000200 U	0.000200 U	0.000200 U	0.000200 U
1 TCLP Metals in Soil					
Arsenic	mg/L	0.050 U	0.050 U	0.050 U	0.050 U
Barium	mg/L	0.401	1.41	1.61	1.41
Cadmium	mg/L	0.005 U	0.005 U	0.005 U	0.005 U
Chromium	mg/L	0.015 U	0.0918	0.0742	0.0360
Lead	mg/L	0.050 U	0.050 U	0.050 U	0.050 U
Selenium	mg/L	0.0564	0.0705	0.0756	0.0680
Silver	mg/L	0.025 U	0.025 U	0.025 U	0.025 U

03/17/2011

Project ID: JBDA7X900

ASR Number: 5198

Project Desc: Rotary Drilling Supply Inc. - PA sampling

Analysis/ Analyte	Units	5	6	7	8
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.35 J	0.18 J	0.13 UJ	0.12 UJ
1 Metals in Solids by ICP-AES					
Aluminum	mg/kg	61100	43000	47200	54800
Antimony	mg/kg	6.9 U	7.0 U	7.6 U	7.2 U
Arsenic	mg/kg	17.8	56.2	18.2	9.8
Barium	mg/kg	4350	2200	3610	3560
Beryllium	mg/kg	3.1	3.9	2.3	2.8
Boron	mg/kg	446	424	423	269
Cadmium	mg/kg	0.58 UJ	0.89 J	0.69 J	0.60 UJ
Calcium	mg/kg	126000	75400	97200	109000
Chromium	mg/kg	39.1	47.9	51.7	27.4
Cobalt	mg/kg	16.7	15.2	12.5	13.6
Copper	mg/kg	122	94.4	117	84.9
Iron Lead	mg/kg	25000 22.4	21800 58.9	18600 27.9	25500 10.0
Magnesium	mg/kg mg/kg	17800	10500	13700	14500
Manganese	mg/kg	150	197	125	143
Nickel	mg/kg	41.9	44.8	30.2	34.7
Potassium	mg/kg	1350	2220	1500	1530
Selenium	mg/kg	4.0 U	5.1	4.5 U	4.2 U
Silver	mg/kg	1.2 U	1.2 U	1.3 U	1.2 U
Sodium	mg/kg	4830	3390	5140	4740
Thallium	mg/kg	2.9 U	2.9 U	3.2 U	3.0 U
Vanadium	mg/kg	143	132	121	119
Zinc	mg/kg	73.3	137	80.7	52.8
1 PAH's in Soil by GC/MS					
Acenaphthene	ug/kg	240 U	240 U	260 U	240 U
Acenaphthylene	ug/kg	240 U	240 U	260 U	240 U
Anthracene	ug/kg	240 U	240 U	260 U	240 U
Benzo(a)anthracene	ug/kg	240 U	240 U	260 U	240 U
Benzo(a)pyrene	ug/kg	240 U	240 U	260 U	240 U
Benzo(b)fluoranthene	ug/kg	240 U	240 U	260 U	240 U
Benzo(g,h,i)perylene	ug/kg	240 U	240 U	260 U	240 U
Benzo(k)fluoranthene	ug/kg	240 U	240 U	260 U	240 U
2-Chloronaphthalene	ug/kg	240 U	240 U	260 U	240 U
Chrysene	ug/kg	240 U	240 U	260 U	240 U
Dibenz(a,h)anthracene	ug/kg	240 U	240 U	260 U	240 U
Fluoranthene	ug/kg	240 U	240 U	260 U	240 U
Fluorene	ug/kg	240 U	240 U	260 U	240 U
Indeno(1,2,3-cd)pyrene	ug/kg	240 U	240 U	260 U	240 U
2-Methylnaphthalene	ug/kg	240 U	240 U	260 U	240 U
Naphthalene Phenanthrene	ug/kg	240 U 240 U	240 U 240 U	260 U 260 U	240 U 240 U
	ug/kg	240 U	240 U	260 U	240 U
Pyrene	ug/kg	240 0	240 0	200 0	240 U

RLAB Approved Sample Analysis Results

03/17/2011

Project ID: JBDA7X900 Project Desc: Rotary Drilling Supply Inc. - PA sampling

ASR Number: 5198

Analysis/ Analyte	Units	5	6	7	8
1 TCLP Mercury in Soil Mercury	mg/L	0.000200 U	0.000200 U	0.000200 U	0.000200 U
1 TCLP Metals in Soil Arsenic	mg/L	0.050 U	0.050 U	0.050 U	0.050 U
Barium Cadmium	mg/L mg/L	1.50 0.005 U	1.66 0.005 U	0.714 0.005 U	2.04 0.005 U
Chromium	mg/L	0.0753	0.0770	0.0313	0.0268
Lead Selenium	mg/L mg/L	0.050 U 0.0729	0.050 U 0.0793	0.050 U 0.0552	0.050 U 0.0565
Silver	ma/L	0.025 U	0.025 U	0.025 U	0.025 U

Project ID: JBDA7X900

Project Desc: Rotary Drilling Supply Inc. - PA sampling

Analysis/ Analyte	Units	9	10	10-FD	11
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.11 UJ	0.18 UJ	0.20 UJ	0.19 UJ
1 Metals in Solids by ICP-AES					
Aluminum	mg/kg	54000	31000	15900	44700
Antimony	mg/kg	6.1 U	5.3 U	5.5 U	5.3 U
Arsenic	mg/kg	8.9	20.0	11.4	26.8
Barium	mg/kg	3600	2100	780	3050
Beryllium	mg/kg	2.6	1.7	1.1	2.5
Boron	mg/kg	275	90.9	53.5	193
Cadmium	mg/kg	0.51 UJ	0.79 J	2.2	0.77 J
Calcium	mg/kg	112000	173000	55000	127000
Chromium	mg/kg	22.1	29.4	19.3	46.1
Cobalt	mg/kg	13.8	12.8	20.3	14.3
Copper	mg/kg	75.4	88.2	96.5	103
Iron	mg/kg	24800	15800	16500	18400
Lead	mg/kg	9.0	124	637	62.4
Magnesium	mg/kg	17200	15900	14600	18100
Manganese	mg/kg	138	1510	866	547
Nickel	mg/kg	33.0	27.9	31.3	35.5
Potassium	mg/kg	1300	1250	1110	2040
Selenium	mg/kg	3.5 U	16.5	7.1	9.7
Silver	mg/kg	1.0 U	0.89 U	0.91 U	0.88 U
Sodium	mg/kg	5310	2770	1140	5350
Thallium	mg/kg	2.5 U	2.2 U	2.3 U	2.2 U
Vanadium	mg/kg	108	76.6	47.1	93.9
Zinc	mg/kg	43.0	106	197	117
1 PAH's in Soil by GC/MS					
Acenaphthene	ug/kg	190 U			
Acenaphthylene	ug/kg	190 U			
Anthracene	ug/kg	190 U			
Benzo(a)anthracene	ug/kg	190 U			
Benzo(a)pyrene	ug/kg	190 U			
Benzo(b)fluoranthene	ug/kg	190 U			
Benzo(g,h,i)perylene	ug/kg	190 U			
Benzo(k)fluoranthene	ug/kg	190 U			
2-Chloronaphthalene	ug/kg	190 U			
Chrysene	ug/kg	190 U			
Dibenz(a,h)anthracene	ug/kg	190 U			
Fluoranthene	ug/kg	190 U			
Fluorene	ug/kg	190 U			
Indeno(1,2,3-cd)pyrene	ug/kg	190 U			
2-Methylnaphthalene	ug/kg	190 U			
Naphthalene	ug/kg	190 U			
Phenanthrene	ug/kg	190 U			
Pyrene	ug/kg	190 U			

ASR Number: 5198 RLAB Approved Sample Analysis Results

03/17/2011

Project ID: JBDA7X900

Project Desc: Rotary Drilling Supply Inc. - PA sampling

Analysis/ Analyte	Units	9	10	10-FD	11
1 TCLP Mercury in Soil Mercury	mg/L	0.000200 U			
1 TCLP Metals in Soil Arsenic	mg/L	0.050 U			
Barium	mg/L	4.98			
Cadmium	mg/L	0.005 U			
Chromium	mg/L	0.050 U			
Lead	mg/L	0.050 U			
Selenium	mg/L	0.050 U			
Silver	mg/L	0.025 U			

Project ID: JBDA7X900

Analysis/ Analyte	Units	12	13	14	15
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.18 UJ	0.13 UJ	0.18 UJ	0.13 UJ
1 Metals in Solids by ICP-AES					
Aluminum	mg/kg	11300	7070	6970	4310
Antimony	mg/kg	5.3 U	7.1 U	5.1 U	7.8 U
Arsenic	mg/kg	8.1	3.7	3.1	4.3
Barium	mg/kg	491	65.0	87.2	69.8
Beryllium	mg/kg	0.75	0.60 U	0.50	0.65 U
Boron	mg/kg	28.8	11.9 U	8.6 U	13.0 U
Cadmium	mg/kg	1.0 J	0.60 UJ	0.43 UJ	0.65 UJ
Calcium	mg/kg	90400	1380	2330	75800
Chromium	mg/kg	18.7	10.5	10.7	8.7
Cobalt	mg/kg	7.5	7.1	4.6	6.5 U
Copper	mg/kg	48.8	10.8	33.3	12.2
Iron	mg/kg	15000	10300	8670	9130
Lead	mg/kg	107	12.7	28.7	14.9
Magnesium	mg/kg	10900	1360	1660	3170
Manganese	mg/kg	768	142	140	265
Nickel	mg/kg	17.1	9.2	10.0	9.9
Potassium	mg/kg	1050	693	767	649 U
Selenium	mg/kg	3.1 U	4.2 U	3.0 U	4.5 U
Silver	mg/kg	0.88 U	1.2 U	0.86 U	1.3 U
Sodium	mg/kg	857	595 U	428 U	649 U
Thallium	mg/kg	2.2 U	3.0 U	2.1 U	3.2 U
Vanadium	mg/kg	30.8	23.2	21.2	15.0
Zinc	mg/kg	204	33.9	50.1	46.4

RLAB Approved Sample Analysis Results

Project ID: JBDA7X900

ASR Number: 5198

Analysis/ Analyte	Units	16	17	18	101
1 Mercury in Soil or Sediment					
Mercury	mg/kg	0.18 UJ	0.18 UJ	0.19 J	
1 Metals in Solids by ICP-AES					
Aluminum	mg/kg	6270	7670	31200	
Antimony	mg/kg	5.1 U	8.0 U	4.9 UJ	
Arsenic	mg/kg	5.3	6.3	12.4 J	-
Barium	mg/kg	98.9	719	1310 J	
Beryllium	mg/kg	0.75	0.67 U	1.5	
Boron	mg/kg	8.4 U	23.7	57.9 J	
Cadmium	mg/kg	2.0	0.68 J	0.86 J	
Calcium	mg/kg	14200	205000	103000	
Chromium	mg/kg	11.6	14.5	30.5 J	
Cobalt	mg/kg	16.3	7.6	10.8	
Copper	mg/kg	59.1	69.0	65.1 J	
Iron	mg/kg	13600	8480	17400 J	
Lead	mg/kg	587	239	83.2	
Magnesium	mg/kg	6300	11700	14300 J	
Manganese	mg/kg	792	739	1230 J	
Nickel	mg/kg	20.4	13.1	26.8	
Potassium	mg/kg	546	667 U	1180	
Selenium	mg/kg	3.0 U	4.7 U	2.9 U	
Silver	mg/kg	0.84 U	1.3 U	0.82 U	
Sodium	mg/kg	422 U	667 U	1850 J	
Thallium	mg/kg	2.1 U	3.3 U	2.1 U	
Vanadium	mg/kg	19.7	18.2	59.5 J	
Zinc	mg/kg	183	99.0	156 J	
1 PAH's in Soil by GC/MS					
Acenaphthene	ug/kg	340 U	290 U	380 U	
Acenaphthylene	ug/kg	340 U	290 U	380 U	
Anthracene	ug/kg	340 U	290 U	380 U	
Benzo(a)anthracene	ug/kg	340 U	290 U	380 U	
Benzo(a)pyrene	ug/kg	340 U	290 U	380 U	
Benzo(b)fluoranthene	ug/kg	340 U	290 U	380 U	
Benzo(g,h,i)perylene	ug/kg	340 U	290 U	380 U	
Benzo(k)fluoranthene	ug/kg	340 U	290 U	380 U	
2-Chloronaphthalene	ug/kg	340 U	290 U	380 U	
Chrysene	ug/kg	340 U	290 U	380 U	
Dibenz(a,h)anthracene	ug/kg	340 U	290 U	380 U	
Fluoranthene	ug/kg	340 U	290 U	380 U	
Fluorene	ug/kg	340 U	290 U	380 U	
Indeno(1,2,3-cd)pyrene	ug/kg	340 U	290 U	380 U	
2-Methylnaphthalene	ug/kg	340 U	290 U	380 U	
Naphthalene	ug/kg	340 U	290 U	380 U	
Phenanthrene	ug/kg	340 U	290 U	380 U	
Pyrene	ug/kg	340 U	290 U	380 U	

ASR Number: 5198

RLAB Approved Sample Analysis Results

03/17/2011

Project ID: JBDA7X900

Analysis/ Analyte	Units	16	17	18	101
1 Mercury in Water					
Mercury	ug/L				0.20 U
1 Metals in Water by ICP/MS					
Antimony	ug/L				2.0 U
Arsenic	ug/L				1.0 U
Barium	ug/L				108
Beryllium	ug/L				1.0 U
Boron	ug/L				293
Cadmium	ug/L				1.0 U
Chromium	ug/L				2.0 U
Cobalt	ug/L				1.5 U
Copper	ug/L				2.1 U
Lead	ug/L				9.9
Manganese	ug/L				641
Nickel	ug/L				3.6
Selenium	ug/L				5.0 U
Silver	ug/L				1.0 U
Thallium	ug/L				1.0 U
Vanadium	ug/L				5.0 U
Zinc	ug/L				6.2 J
1 PAH's in Water by GC/MS-SIM					
Acenaphthene	ug/L				0.050 UJ
Acenaphthylene	ug/L				0.050 UJ
Anthracene	ug/L				0.050 UJ
Benzo(a)anthracene	ug/L				0.050 UJ
Benzo(a)pyrene	ug/L				0.050 UJ
Benzo(b)fluoranthene	ug/L				0.050 UJ
Benzo(g,h,i)perylene	ug/L				0.050 UJ
Benzo(k)fluoranthene	ug/L				0.050 UJ
Chrysene	ug/L				0.050 UJ
Dibenz(a,h)anthracene	ug/L				0.050 UJ
Fluoranthene	ug/L				0.050 UJ
Fluorene	ug/L				0.050 UJ
Indeno(1,2,3-cd)pyrene	ug/L				0.050 UJ
1-Methylnaphthalene	ug/L				0.050 UJ
2-Methylnaphthalene	ug/L				0.050 UJ
Naphthalene	ug/L				0.050 UJ
Phenanthrene	ug/L				0.050 UJ
Pyrene	ug/L				0.050 UJ

03/17/2011

Project ID: JBDA7X900

Analysis/ Analyte	Units	102	103	104	104-FD
1 Mercury in Water					
Mercury	ug/L	0.20 U	0.20 U	0.20 U	0.20 U
1 Metals in Water by ICP/MS					
Antimony	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Arsenic	ug/L	4.0	1.0 U	3.8 U	3.7 U
Barium	ug/L	151	103	148	140
Beryllium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Boron	ug/L	664	156	651	618
Cadmium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Chromium	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Cobalt	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Copper	ug/L	2.9 U	2.0 U	2.7 U	2.6 U
Lead	ug/L	2.0 U	1.0 U	2.4 U	2.6 U
Manganese	ug/L	222	212	282	267
Nickel	ug/L	3.4	2.2 U	3.8	3.6
Selenium	ug/L	7.5	5.0 U	7.0	7.4
Silver	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Thallium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Vanadium	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Zinc	ug/L	2.3 U	2.7 U	3.9 U	3.5 U
1 PAH's in Water by GC/MS-SIM					*
Acenaphthene	ug/L	0.050 UJ	0.050 UJ		
Acenaphthylene	ug/L	0.050 UJ	0.050 UJ		
Anthracene	ug/L	0.050 UJ	0.050 UJ		
Benzo(a)anthracene	ug/L	0.050 UJ	0.050 UJ		
Benzo(a)pyrene	ug/L	0.050 UJ	0.050 UJ		
Benzo(b)fluoranthene	ug/L	0.050 UJ	0.050 UJ		
Benzo(g,h,i)perylene	ug/L	0.050 UJ	0.050 UJ		
Benzo(k)fluoranthene	ug/L	0.050 UJ	0.050 UJ		
Chrysene	ug/L	0.050 UJ	0.050 UJ		
Dibenz(a,h)anthracene	ug/L	0.050 UJ	0.050 UJ		
Fluoranthene	ug/L	0.050 UJ	0.050 UJ		
Fluorene	ug/L	0.050 UJ	0.050 UJ		
Indeno(1,2,3-cd)pyrene	ug/L	0.050 UJ	0.050 UJ		
1-Methylnaphthalene	ug/L	0.050 UJ	0.050 UJ		
2-Methylnaphthalene	ug/L	0.050 UJ	0.050 UJ		
Naphthalene	ug/L	0.050 UJ	0.050 UJ		
Phenanthrene	ug/L	0.050 UJ	0.050 UJ		
Pyrene	ug/L	0.050 UJ	0.050 UJ		

ASR Number: 5198 **RLAB Approved Sample Analysis Results**

03/17/2011

Project ID: JBDA7X900

Analysis/ Analyte	Units	105	106	107	108
1 Mercury in Water Mercury	ug/L	0.20 U	0.20 U	0.20 U	0.20 U
1 Metals in Water by ICP/MS					
Antimony	ug/L	2.0 U	2.0 U	2.0 U	2.0 U
Arsenic	ug/L	29.7	1.0 U	1.0 U	1.0 U
Barium	ug/L	309	95.0	54.7	47.9
Beryllium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Boron	ug/L	4040	119	50.2 U	42.7 U
Cadmium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Chromium	ug/L	15.0	2.0 U	2.0 U	2.0 U
Cobalt	ug/L	3.4	1.0 U	1.0 U	1.0 U
Copper	ug/L	23.8	2.0 U	3.1 U	2.2 U
Lead	ug/L	31.1	1.0 U	2.6 U	1.1 U
Manganese	ug/L	421	63.3	88.5	47.5
Nickel	ug/L	14.5	1.7 U	2.4 U	1.8 U
Selenium	ug/L	25.7	5.0 U	5.0 U	5.0 U
Silver	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Thallium	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
Vanadium	ug/L	51.0	5.0 U	5.0 U	5.0 U
Zinc	ug/L	48.3	2.7 U	7.7 J	3.6 U

RLAB Approved Sample Analysis Results

Project ID: JBDA7X900

ASR Number: 5198

Analysis/ Analyte	Units	109	111	112-FB
1 Mercury in Water Mercury	ug/L	0.20 U	0.20 U	0.20 U
1 Metals in Water by ICP/MS				
Antimony	ug/L	2.0 U	2.0 U	2.0 U
Arsenic	ug/L	1.0 U	1.4 U	1.0 U
Barium	ug/L	48.8	139	10.0 U
Beryllium	ug/L	1.0 U	1.0 U	1.0 U
Boron	ug/L	38.3 U	33.0 U	10.0 U
Cadmium	ug/L	1.0 U	1.0 U	1.0 U
Chromium	ug/L	2.0 U	9.7	2.0 U
Cobalt	ug/L	1.0 U	1.0 U	1.0 U
Copper	ug/L	2.1 U	6.9 U	2.0 U
Lead	ug/L	1.0 U	1.5 U	1.0 U
Manganese	ug/L	47.9	12.0	1.0 U
Nickel	ug/L	2.3 U	2.4 U	1.0 U
Selenium	ug/L	5.0 U	5.0 U	5.0 U
Silver	ug/L	1.0 U	1.0 U	1.0 U
Thallium	ug/L	1.0 U	1.0 U	1.0 U
Vanadium	ug/L	5.0 U	5.0 U	5.0 U
Zinc	ug/L	3.3 U	19.2	2.0 U

United States Environmental Protection Agency Region VII 901 N. 5th Street Kansas City, KS 66101

Date: _	
Subject:	Data Disposition/Sample Release for ASR #: 5198 Project ID: JBDA7X900
	Project Description: Rotary Drilling Supply Inc PA sampling
From:	Jamie Bernard-Drakey SUPR/ERSB
То:	Kaye Dollmann ENSV/CARB
Anal	ve received and reviewed the Transmittal of Sample Analysis Results for the above-referenced ytical Services Request(ASR) and have indicated my findings below by checking one of the se for Data Disposition.
I und	derstand all samples will be disposed upon receipt of this form, unless samples are requested e held. If I do not return this form all samples will be disposed of on
"Cu	LEASED" - Read-only to all Region 7 employees and contractors that have R7LIMS stomer" account. All Samples may be disposed of upon receipt of this form if not requested to neld.
	oject Manager Accessible" - Available on the LAN in R7LIMS for my use only. All Samples may disposed of upon receipt of this form if not requested to be held.
thro	chived" - THIS DATA IS OF A SENSITIVE NATURE. Any future reports must be requested ough the laboratory. All samples may be disposed of upon receipt of the form if not requested e held.
whi	d Samples - I have determined that the samples need to be held until, after the samples held until
	Samples are associated with a legal proceeding.
	Question/Concern with data - possible reanalysis requested.
	Other:

APPENDIX G

TABLES

TABLE G-1

METALS ANALYTICAL DATA SUMMARY FOR SURFACE AND SUBSURFACE SOURCE SAMPLES RDS SITE FEBRUARY 2011

NAME OF THE OWNER, WHEN THE OW		Benc	chmark Values (mg/kg)	USGS			Sample Nan	ne, Number	, Depth (ft b	gs), and Re	sults (mg/kg	g)	
Analyte	RfD	CR	RSL Industrial Soil	RSL Residential Soil	AND DESCRIPTION OF THE PERSON NAMED IN	RDS-SB-1 (0-2) 5198-1	RDS-SB-2 (10-12) 5198-2	RDS-SB-3 (7-9) 5198-3	RDS-SB-4 (24-26) 5198-4	RDS-SB-5 (0-2) 5198-5	RDS-SB-6 (13-15) 5198-6	RDS-SF-1 (0-2) 5198-7	RDS-SF-2 (0-2) 5198-8	RDS-SF-3 (0-2) 5198-9
Aluminum	NE	NE	990,000	77,000	21,700	1,270	61,300	56,300	62,000	61,100	43,000	47,200	54,800	54,000
Antimony	31	NE	410	31	NA	5.2 U	7.0 U	6.3 U	8.3 U	6.9 U	7.0 U	7.6 U	7.2 U	6.1 U
Arsenic	23	0.43	1.6	0.39	6.292	3.8	39.2	17.1	50.4	17.8	56.2	18.2	9.8	8.9
Barium	5,500	NE	190,000	15,000	NA	17.4 U	4,270	3,950	4,300	4,350	2,200	3,610	3,560	3,600
Beryllium	160	NE	2,000	160	NA	0.43 U	3.6	3.0	4.0	3.1	3.9	2.3	2.8	2.6
Boron	7,000	NE	200,000	16,000	NA	12.3 U	538	406	590	446	424	423	269	275
Cadmium	39	NE	800	70	NA	0.43 UJ	0.67 J	0.53 UJ	0.69 UJ	0.58 UJ	0.89 J	0.69 J	0.60 UJ	0.51 UJ
Calcium	NE	NE	NE	NE	25,060	108,000	123,000	111,000	118,000	126,000	75,400	97,200	109,000	112,000
Chromium	230	NE	NE	NE	NA	3.0	51.2	33.7	59.1	39.1	47.9	51.7	27.4	22.1
Cobalt	NE	NE	300	23	NA	4.3 U	18.8	13.5	19.3	16.7	15.2	12.5	13.6	13.8
Copper	NE	NE	41,000	3,100	13.924	4.9	137	105	142	122	94.4	117	84.9	75.4
Iron	NE	NE	720,000	55,000	14,020	2,950	25,300	22,100	24,200	25,000	21,800	18,600	25,500	24,800
Lead	NE	NE	800	400	71.937	38.7	45.2	19.4	56.3	22.4	58.9	27.9	10.0	9.0
Magnesium	NE	NE	NE	NE	10,950	55,100	16,200	14,800	16,600	17,800	10,500	13,700	14,500	17,200
Manganese	11,000	NE	23,000	1,800	910.551	65.5	172	149	223	150	197	125	143	138
Mercury	23	NE	43	10	0.018	0.10 UJ	0.21 J	0.11 UJ	0.16 UJ	0.35 J	0.18 J	0.13 UJ	0.12 UJ	0.11 UJ
Nickel	1,600	NE	NE	NE	NA	5.7	48.3	33.5	50.7	41.9	44.8	30.2	34.7	33.0
Potassium	NE	NE	NE	NE	NA	682	1,780	1,410	2,080	1,350	2,220	1,500	1,530	1,300
Selenium	390	NE	5,100	390	0.227	3.0 U	6.0	3.7 U	5.5	4.0 U	5.1	4.5 U	4.2 U	3.5 U
Silver	390	NE	5,100	390	NA	0.87 U	1.2 U	1.1 U	1.4 U	1.2 U	1.2 U	1.3 U	1.2 U	1.0 U
Sodium	NE	NE	NE	NE	2,250	434 U	4,730	4,980	4,900	4,830	3,390	5,140	4,740	5,310
Thallium	NE	NE	NE	NE	NA .	2.2 U	2.9 U	2.6 U	3.4 U	2.9 U	2.9 U	3.2 U	3.0 U	2.5 U
Vanadium	550	NE	5,200	390	NA	4.6	161	129	167	143	132	121	119	108
Zinc	23,000	NE	310,000	23,000	111.795	16.6	104	62.5	128	73.3	137	80.7	52.8	43.0

Bold value indicates a concentration exceeds a benchmark value. Shaded cell indicates a concentration that exceeds the county average for the analyte.

Cancer Risk Screening Concentration from SCDM

ft bgs Feet below ground surface Estimated concentration

mg/kg Milligrams per kilogram NA Not available

Not established

RDS Rotary Drilling Supply RfD Reference Dose Screening Concentration from SCDM Regional screening level (EPA 2010)

RSL

SCDM Superfund Chemical Data Matrix (EPA 2004)

SB Soil Boring

U The analyte was not detected at or above the reporting limit

UJ The analyte was not detected at or above the reporting limit. The reporting limit is an estimate.

USGS United States Geological Survey (USGS 2010)

TABLE G-2

TCLP METALS SUMMARY FOR SURFACE AND SUBSURFACE SOURCE SAMPLES RDS SITE FEBRUARY 2011

Signal Services	Toxicity	Characteristic	建筑是是影	Sample ID and Results (mg/L)										
Analyte	CAS No.	Regulatory Level (mg/L)	5198-1	5198-2	5198-3	5198-4	5198-5	5198-6	5198-7	5198-8	5198-9			
Arsenic	7440-38-2	5.0	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U			
Barium	7440-39-3	100.0	0.401	1.41	1.61	1.41	1.50	1.66	0.714	2.04	4.98			
Cadmium	7440-43-9	1.0	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U			
Chromium	7440-47-3	5.0	0.015 U	0.0918	0.0742	0.0360	0.0753	0.0770	0.0313	0.0268	0.050 U			
Lead	7439-92-1	5.0	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U			
Mercury	7439-97-6	0.2	0.000200 U	0.000200 U	0.000200 U	0.000200 U	0.000200 U	0.000200 U	0.000200 U	0.000200 U	0.000200 U			
Selenium	7782-49-2	1.0	0.0564	0.0705	0.0756	0.0680	0.0729	0.0793	0.0552	0.0565	0.050 U			
Silver	7440-22-4	5.0	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U			

Notes:

mg/L

CAS No. Chemical Abstracts Service number

Identification

Milligrams per Liter

TCLP

Toxicity Characteristic Leaching Procedure
The analyte was not detected at or above the reporting limit

U RDS Rotary Drilling Supply

TABLE G-3

METALS DATA SUMMARY FOR SURFACE WATER SAMPLES RDS SITE FEBRUARY 2011

	Benchmark	Benchmark Values (µg/L)		Sample Name, EPA Sample ID, and Concentrations (µg/L)										
			Three Times								Bac	kground Sam	ples	
Analyte	Acute CMC	Chronic CCC	Background	RDS-SW-1 5198-101	RDS-SW-2 5198-104	RDS-SW-2-FD 5198-104-FD	RDS-SW-3 5198-102	5198-105	RDS-SW-5 5198-103	RDS-SW-6 5198-106	RDS-SW-7 5198-107	RDS-SW-8 5198-108	RDS-SW-9 5198-109	
Antimony	NE	NE	> 2.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	
Arsenic	340	150	> 1.0	1.0 U	3.8 U	3.7 U	4.0	29.7	1.0 U					
Barium	NE	NE	164.1	108	148	140	151	309	103	95.0	54.7	47.9	48.8	
Beryllium	NE	NE	> 1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
Boron	NE	NE	> 50.2	293	651	618	664	4,040	156	119	50.2 U	42.7 U	38.3 U	
Cadmium	2.0	0.25	> 1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
Chromium	NE	NE	> 2.0	2.0 U	2.0 U	2.0 U	2.0 U	15.0	2.0 U					
Cobalt	NE	NE	> 1.0	1.5 U	1.0 U	1.0 U	1.0 U	3.4	1.0 U					
Copper	13	9.0	> 3.1	2.1 U	2.7 U	2.6 U	2.9 U	23.8	2.0 U	2.0 U	3.1 U	2.2 U	2.1 U	
Lead	65	2.5	>2.6	9.9	2.4 U	2.6 U	2.0 U	31.1	1.0 U	1.0 U	2.6 U	1.1 U	1.0 U	
Manganese	NE	NE	265.5	641	282	267	222	421	212	63.3	88.5	47.5	47.9	
Mercury	1.4	0.77	> 0.20	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	
Nickel	470	52	> 2.4	3.6	3.8	3.6	3.4	14.5	2.2 U	1.7 U	2.4 U	1.8 U	2.3 U	
Selenium	NE	5.0	> 5.0	5.0 U	7.0	7.4	7.5	25.7	5.0 U					
Silver	3.2	NE	> 1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
Thallium	NE	NE	> 1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
Vanadium	NE	NE	> 5.0	5.0 U	5.0 U	5.0 U	5.0 U	51.0	5.0 U					
Zinc	120	120	23.1	6.2 J	3.9 U	3.5 U	2.3 U	48.3	2.7 U	2.7 U	7.7 J	3.6 U	3.3 U	

Notes:

Bold value indicates a concentration exceeds a benchmark value.

Shaded value indicates concentration exceeds three times the highest background level or detection limit if not detected in background.

Criterion Continuous Concentration from SCDM Critical Maximum Concentration from SCDM CMC

U.S. Environmental Protection Agency

FD Field duplicate Identification ID

Estimated concentration

μg/L Micrograms per liter
NE Not established
RDS Rotary Drilling Supply

SCDM Superfund Chemical Data Matrix (EPA 2004)
SW Surface water

The analyte was not detected at or above the reporting limit

TABLE G-4

METALS DATA SUMMARY FOR SEDIMENT SAMPLES RDS SITE FEBRUARY 2011

		Sample Name, EPA Sample ID, and Concentrations in milligrams per kilogram (mg/kg)												
	Three Times								Back	kground loc	ations			
Analyte	Background	RDS-SD-1 5198-16	5198-10	RDS-SD-2-FD 5198-10-FD	5198-17	5198-11	RDS-SD-5 5198-18	5198-12	RDS-SD-7 5198-13	RDS-SD-8 5198-14	RDS-SD-9 5198-15			
Aluminum	21,210	6,270	31,000	15,900	7,670	44,700	31,200	11,300	7,070	6,970	4,310			
Antimony	> 7.8	5.1 U	5.3 U	5.5 U	8.0 U	5.3 U	4.9 UJ	5.3 U	7.1 U	5.1 U	7.8 U			
Arsenic	12.9	5.3	20.0	11.4	6.3	26.8	12.4 J	8.1	3.7	3.1	4.3			
Barium	261.6	98.9	2,100	780	719	3,050	1,310 J	491	65.0	87.2	69.8			
Beryllium	1.50	0.75	1.7	1.1	0.67 U	2.5	1.5	0.75	0.60 U	0.50	0.65 U			
Boron	> 13.0	8.4 U	90.9	53.5	23.7	193	57.9	28.8	11.9 U	8.6 U	13.0 U			
Cadmium	> 0.65	2.0	0.79 J	2.2	0.68 J	0.77 J	0.86 J	1.0 J	0.60 UJ	0.43 UJ	0.65 UJ			
Calcium	227,400	14,200	173,000	55,000	205,000	127,000	103,000	90,400	1,380	2,330	75,800			
Chromium	32.1	11.6	29.4	19.3	14.5	46.1	30.5 J	18.7	10.5	10.7	8.7			
Cobalt	21.3	16,3	12.8	20.3	7.6	14.3	10.8	7.5	7.1	4.6	6.5 U			
Copper	99.9	59.1	88.2	96.5	69.0	103	65.1	48.8	10.8	33.3	12.2			
Iron	30,900	13,600	15,800	16,500	8,480	18,400	17,400 J	15,000	10,300	8,670	9,130			
Lead	86.1	587	124	637	239	62.4	83.2	107	12.7	28.7	14.9			
Magnesium	9,510	6,300	15,900	14,600	11,700	18,100	14,300 J	10,900	1,360	1,660	3,170			
Manganese	795	792	1,510	866	739	547	1,230 J	768	142	140	265			
Mercury	> 0.18	0.18 UJ	0.18 UJ	0.20 UJ	0.18 UJ	0.19 UJ	0.19 J	0.18 UJ	0.13 UJ	0.18 UJ	0.13 UJ			
Nickel	30.0	20.4	27.9	31.3	13.1	35.5	26.8	17.1	9.2	10.0	9.9			
Potassium	2,301	546	1,250	1,110	667 U	2,040	1,180	1,050	693	767	649 U			
Selenium	> 4.5	3.0 U	16.5	7.1	4.7 U	9.7	2.9 U	3.1 U	4.2 U	3.0 U	4.5 U			
Silver	> 1.3	0.84 U	0.89 U	0.91 U	1.3 U	0.88 U	0.82 U	0.88 U	1.2 U	0.86 U	1.3 U			
Sodium	> 649	422 U	2,770	1,140	667 U	5,350	1,850	857	595 U	428 U	649 U			
Thallium	> 3.2	2.1 U	2.2 U	2.3 U	3.3 U	2.2 U	2.1 U	2.2 U	3.0 U	2.1 U	3.2 U			
Vanadium	69.6	19.7	76.6	47.1	18.2	93.9	59.5 J	30.8	23.2	21.2	15.0			
Zinc	150.3	183	106	197	99.0	117	156 J	204	33.9	50.1	46.4			

Notes:

Shaded value indicates concentration exceeds three times the highest background level or detection limit if not detected in background.

U.S. Environmental Protection Agency EPA

Rotary Drilling Supply RDS

FD Field duplicate SD Sediment sample

ID Identification U

Estimated concentration

The analyte was not detected at or above the reporting limit. The reporting limit is an estimate. UJ

APPENDIX H REMOVAL SITE EVALUATION FORM

yr									
outh Truman	Boulevard								
STATE: M	Iissouri	ZIP: 63019							
	,								
n/Preliminar	y Assessment Repor	rt							
	DATE OF REQUI	EST: 11/08/2010							
		1							
STATE: K	Lansas	ZIP: 66101							
FAX: (913) 551-9400	3							
		•							
STATE: M	Iissouri	ZIP: 64106							
FAX: (816) 410-1748								
CFR 300.410	(E)]								
		YES 🖾 or NO 🗌							
EXPLAIN: Metals have been detected in fill materials and nearby surface water and sediment samples at concentrations above three times background levels. (A RELEASE is defined as any spilling, leaking, pumping, pouring, emitting, emptying, discharging, injecting, escaping, leaching, dumping, or disposing into the environment (including the abandonment of barrels, containers, and other closed receptacles containing any hazardous substances or pollutant or contaminant), but excludes: workplace exposures; engine exhaust emissions; nuclear releases otherwise regulated; and the normal application of fertilizer. For purposes of the NCP, release also means threat of release.)									
BY THE N	CP:	YES 🛛 or NO 🗌							
motor vehicle, or otherwise o as any descri	rolling stock, or airci come to be located; bu ption of watercraft or	raft or any site or area, where a at does not include any							
	STATE: Most. Louis, go on/Preliminary STATE: K FAX: (913 STATE: Most. (816 FR 300.410 by surface we witting, emptying, of barrels, coolace exposures ses of the NC. BY THE No. CP. ent, pipe or pipe on otherwise of as any description of the series of the NC. and the series of the NC. BY THE No. CP.	tting, emptying, discharging, injection of barrels, containers, and other clolace exposures; engine exhaust emses of the NCP, release also means BY THE NCP:							

SUPERFUND REMOVAL SITE EVALUATION	- ×
OOES THE RELEASE INVOLVE A HAZARDOUS SUBSTANCE, OR POLLUTANT OR CONTAMINANT AS DEFINED BY THE NCP:	YES 🖾 or NO 🗌
EXPLAIN: Elevated concentrations of metals were identified in surface water, sediment, and surface naterials at the site.	ce and subsurface fill
A HAZARDOUS SUBSTANCE means any substance, element, compound, mixture, solution, hazardous waster pollutant, or imminently hazardous chemical substance or mixture designated pursuant to the CWA, CERCLE for term does not include petroleum products, natural gas, natural gas liquids, liquefied natural gas, synthetic gand synthetic gas. The definition of POLLUTANT or CONTAMINANT includes, but is not limited to, any element including disease-causing agents, which after release into the environment and upon exposure, ingents in including disease-causing agents, which after release into the environment and upon exposure, ingents in the anticipated to cause death, disease, behavioral abnormalities, cancer, genetic mutation, physiological malfund eleformations, in such organisms or their offspring. The term does not include petroleum products, natural gas, iquefied natural gas, synthetic gas or mixtures of natural and synthetic gas).	A, SDWA, CAA or TSCA. gas or mixtures of natural nent, substance, compound, stion, inhalation, or tins, will or may reasonably nctions or physical
S THE RELEASE SUBJECT TO THE LIMITATIONS ON RESPONSE:	YES \square or NO \boxtimes
EXPLAIN: There are no limitations on response.	
The LIMITATIONS ON RESPONSE provisions of the NCP (40 CFR 300.400(B) states that removals <u>shall not response</u> to a release: of a naturally occurring substance in its unaltered or natural form; from products that a und result in exposure within, residential buildings or business or community structures; or into public or privalue to deterioration of the system through ordinary use.)	re a part of the structure of, tte drinking water supplies
DOES THE QUANTITY OR CONCENTRATION WARRANT RESPONSE:	YES 🛛 or NO 🗌
EXPLAIN: Coal fly ash used as fill material and contaminated surface water and sediment at/near to sources of exposure to hazardous substances. Analytical results should be evaluated by EPA risk asswhether the levels and extent of contamination present an unacceptable risk to human health and the warrants further CERCLA response.	sessors to determine
HAS A PRP BEEN IDENTIFIED:	YES 🖾 or NO 🗌
EXPLAIN: Rotary Drilling Supply, Inc. (address of facility below) has been identified as the PRP.	
Rotary Drilling Supply, Inc.	
1150 South Truman Boulevard	
Crystal City, MO 63019	
V. CONDITIONS TO WARRANT REMOVAL [40 CFR 300.415(B)(2)]:	
ACTUAL OR POTENTIAL EXPOSURE TO HAZARDOUS SUBSTANCES, POLLUTANTS OR CONTAMINANTS:	, YES ⊠ or NO □
EXPLAIN: The potential exists for exposure to elevated levels of metals in surface fill materials at surface water and sediment.	the site and in nearby
ACTUAL OR POTENTIAL CONTAMINATION OF DRINKING WATER SUPPLIES:	YES 🗌 or NO 🖂
EXPLAIN: Drinking water in the area is provided by the City of Crystal City. The closest known pulle east of the site; therefore, contamination of drinking water is unlikely.	private well is over ½
HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN DRUMS, BARRELS,OR BULK STORAGE CONTAINERS:	YES 🗌 or NO 🖂
EXPLAIN: No drums, barrels, or bulk storage containers are present.	

SUPERFUND REMOVAL SITE EVALUATION	
HIGH LEVELS OF HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS IN NEAR-SURFACE SOILS:	YES 🖾 or NO 🗌
EXPLAIN: Elevated levels of metals have been detected in near-surface fill material at the site.	
CONDITIONS SUSCEPTIBLE TO IMPACT FROM ADVERSE WEATHER CONDITIONS:	YES 🖾 or NO 🗌
EXPLAIN: Heavy rainfall could promote contaminated runoff from the coal fly ash fill material.	
THREAT OF FIRE OR EXPLOSION:	YES 🗌 or NO 🖂
EXPLAIN: No threat of fire or explosion exists at the site.	
POTENTIAL FOR OTHER FEDERAL OR STATE RESPONSE MECHANISMS:	YES 🗌 or NO 🖂
EXPLAIN : It is not anticipated that other federal or state agencies would be involved with removal ac	ctivities at the site.
OTHER SITUATIONS OR FACTORS WHICH POSE A THREAT:	YES 🗌 or NO 🖂
EXPLAIN: No other situations or factors exist that could pose a threat.	
V. POTENTIAL REMOVAL ACTIONS [40 CFR 300.415(D)]:	
(NOTE: The following identifies potential removal actions which may be determined to be appropriate and study. The proposed actions should be considered preliminary proposals and are subject to change.)	pending further review
SITE SECURITY:	YES 🖾 or NO 🗌
EXPLAIN: The site is not fenced. Fencing may protect the general public from areas of contamination	on.
STABILIZATION OR REMOVAL OF SURFACE IMPOUNDMENTS:	YES 🗌 or NO 🖂
EXPLAIN: No surface impoundments exist at the site.	* 1
CAPPING OF CONTAMINATED SOIL:	YES 🖾 or NO 🗌
EXPLAIN: Surface fill material containing elevated levels of metals has been identified at the site. C would minimize the threat of exposure.	apping the material
USE OF CHEMICALS TO CONTROL/RETARD SPREAD OF CONTAMINATION:	YES 🗌 or NO 🖂
EXPLAIN: Chemical stabilization would not likely be used to control the spread of contamination at t Supply site.	
CONTAMINATED SOIL EXCAVATION:	YES 🛛 or NO 🗌
EXPLAIN: The coal fly ash fill material could be removed by excavation.	
REMOVAL OF DRUMS, TANKS, OR BULK STORAGE CONTAINERS:	YES 🗌 or NO 🖂
EXPLAIN: No drums, tanks, or bulk storage containers are present at the coal fly ash fill site.	
CONTAINMENT, TREATMENT, OR DISPOSAL OF HAZARDOUS SUBSTANCES, POLLUTANTS, OR CONTAMINANTS:	YES 🖾 or NO 🗌
EXPLAIN : Containment, treatment, or disposal of contaminated fill at the site may be required.	_
PROVIDE ALTERNATIVE WATER SUPPLIES:	YES 🗌 or NO 🖂
EXPLAIN: Since the City of Crystal City provides drinking water to the Rotary Drilling Supply site, i provide alternative water supplies. No nearby private wells suspected to be contaminated.	it is not necessary to

		SUPERFUNI	R	EMOVAL SITE EVAL	UA'	ΓΙΟΝ			
VI.		REMOVAL SITE EVALUATION I			AL P	RELIMINARY ASSESSMENT			
	RE	MOVAL NOT WARRANTED—REM	IOV	AL SITE EVALUATION TERMI	NAT	ED			
(Cite	Cite one or more of the criteria from SECTION III. REMOVAL SITE EVALUATION CRITERIA, as the basis for the above determination.)								
NOT A RELEASE						NOT A FACILITY OR VESSEL			
		NOT A HAZARDOUS SUBSTANCE OR I	POLL	UTANT OR CONTAMINANT		SUBJECT TO RESPONSE LIMITATIONS			
		INSUFFICIENT QUANTITY OR CONCE	NTR	ATION		WILLING/CAPABLE PRP IDENTIFIED			
CO	MME	ENT:							
	RE	MOVAL RECOMMENDED [EM	IERO	GENCY TIME-CRITICAL		NON-TIME-CRITICAL]			
		or more of the conditions or factors from Sectoval action be conducted.)	tion I	V. CONDITIONS TO WARRANT A R	EMO	VAL ACTION, as a basis for recommend			
	EXPOSURE TO HAZARDOUS SUBSTANCES CONTAMINANTS			OR POLLUTANTS OR		ADVERSE WEATHER IMPACTS			
		CONTAMINATED DRINKING WATER		FIRE/EXPLOSION THREAT		CONTAMINATED SOIL			
		DRUMS, BARRELS OR CONTAINERS		NO OTHER RESPONSE MECHANISM		OTHER FACTORS			
		ne or more of the removal actions listed in So sponse actions which are recommended.)	ection	V. REMOVAL ACTIONS WHICH MA	Y BE	APPROPRIATE, as examples of the			
		SITE SECURITY		DRAINAGE CONTROL		IMPOUNDMENT STABILIZATION			
		REMOVAL OF DRUMS, BARRELS, ETC.		SOIL CAPPING		SOIL EXCAVATION			
		CONTAIN/TREAT/DISPOSE OF WASTES		CHEMICAL CONTROLS		ALT. DRINKING WATER SUPPLIES			
CO	MME	ENT:				z			
X	AD	DITIONAL REMOVAL SITE EVAL	UAT	TION RECOMMENDED					
		or more of the conditions or factors from Sect ding that additional site evaluation be perfor			ЕМО	VAL ACTION, as a basis for			
	X	EXPOSURE TO HAZARDOUS SUBSTAN CONTAMINANTS	CES	OR POLLUTANTS OR	X	ADVERSE WEATHER IMPACTS			
		CONTAMINATED DRINKING WATER		FIRE/EXPLOSION THREAT	X	CONTAMINATED SOIL			
		DRUMS, BARRELS OR CONTAINERS	X	NO OTHER RESPONSE MECHANISM		OTHER FACTORS			
		ne or more of the removal actions listed in Se sponse actions which may be appropriate per			Y BE	APPROPRIATE, as examples of the			
	X	SITE SECURITY	X	DRAINAGE CONTROL		IMPOUNDMENT STABILIZATION			
		REMOVAL OF DRUMS, BARRELS, ETC.	X	SOIL CAPPING	X	SOIL EXCAVATION			
	X	CONTAIN/TREAT/DISPOSE OF WASTE		CHEMICAL CONTROLS		ALTERNATIVE DRINKING WATER SUPPLIES			
COI	име	ENT: Analytical results should be eva	luate	d by EPA risk assessors to determ	ine w	hether the levels and extent of			
		ation at the site present an unacceptab							

COMMENT: Analytical results should be evaluated by EPA risk assessors to determine whether the levels and extent of contamination at the site present an unacceptable risk to human health and the environment that warrants a removal action. Potential activities that may be conducted if a removal action is necessary include installation of restrictive fencing to prevent exposure to fly ash fill material, and excavation, capping, or treatment of approximately 136,111 yd³ of fly ash on the site property.

	SUPERFUND REMOVAL SITE EVALUATION				
VII.	ADDITIONAL INFORMATION OR COM	MENTS:			
	EP.	A USE ONLY			
VIII.	CERTIFICATION				
SIGNA	THE.	DATE.			
SIGNA' POSITI	ION/TITLE:	DATE:			
OFFIC	E/ACENCY.				

SUPERFUND REMOVAL SITE EVALUATION

(Supplemental Waste Inventory Sheet)

	ementar viaste m					
IX. HAZARDOUS SUBSTANCES, POLLUTANTS OR CONTAMINANT INFORMATION:						
MATERIAL DESCRIPTION	CONTAINER INFORMATION					
TRADE NAME/ACTIVE INGREDIENTS	NUMBER of CONTAINERS	SIZE	ТҮРЕ	SOLID or LIQUID	% FULL	CONDITION